Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol Res (Camb) ; 13(2): tfae039, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38500515

RESUMO

Background: Fluoride is a necessary element for human health, but excessive fluoride intake is found toxic to the liver. Previous studies confirmed that Grape seed procyanidin extract (GSPE) protects against fluoride-induced hepatic injury. However, the mechanism underlying this protective effect remains obscure. To evaluate the protective effect of GSPE against fluoride-induced hepatic injury and explore the possible hepatoprotective role of the Nrf2 signaling pathway to find effective strategies for the treatment and prevention of fluoride-induced hepatotoxicity. This study aims to explore the mechanisms by which GSPE attenuates fluoride-induced hepatotoxicity through a rat drinking water poisoning model. Methods: Hepatic injury was determined by serum biochemical parameters, oxidative parameters, HE, and TUNEL analysis. The protein expression levels of apoptosis-related proteins like Bax, B-cell lymphoma-2 (Bcl-2), and Caspase-3 and the nuclear factor, erythroid 2 like 2 (Nrf2) were analyzed by Western blot. Resluts: Our results showed that GSPE administration reduced fluoride-induced elevated serum ALT and AST and enhanced the antioxidant capacity of the liver. In addition, GSPE mitigated fluoride-induced histopathological damage and reduced the liver cell apoptosis rate. Furthermore, GSPE significantly up-regulated the expression and nuclear translocation of the Nrf2 and decreased apoptosis-related proteins like Bax and caspase-3 in the hepatic. Conclusion: Taken together, GSPE exerts protective effects on the oxidative damage and apoptosis of fluoride-induced hepatic injury via the activation of the Nrf2 signaling pathway. This study provides a new perspective for the mechanism study and scientific prevention and treatment of liver injury induced by endemic fluorosis.

3.
Am J Transl Res ; 10(2): 605-617, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29511455

RESUMO

Long noncoding RNAs (lncRNAs) are dysregulated in many diseases. MicroRNA-101 (miR-101) functions as a tumor suppressor by directly targeting ZEB1 in various cancers. However, the potential mechanism of lncRNA ZEB1-AS1 and miR-101/ZEB1 axis in CRC remains unknown. In this study, we further investigated the potential interplay between miR-101/ZEB1 axis and lncRNA ZEB1-AS1 in colorectal cancer (CRC). Results showed that ZEB1-AS1 was upregulated in CRC tissues and cells. MiR-101 was downregulated in CRC tissues and negatively correlated with ZEB1-AS1 and ZEB1 expression levels in CRC. Functional experiments showed that, consistent with ZEB1-AS1 depletion, miR-101 overexpression and ZEB1 depletion inhibited the proliferation and migration of CRC cells. Overexpression of miR-101 partially abolished the effects of ZEB1-AS1 on the proliferation and migration of these cells. Moreover, combined ZEB1-AS1 depletion and miR-101 overexpression significantly inhibited cell proliferation and migration of the CRC cells. Hence, ZEB1-AS1 functioned as a molecular sponge for miR-101 and relieved the inhibition of ZEB1 caused by miR-101. This study revealed a novel regulatory mechanism between ZEB1-AS1 and miR-101/ZEB1 axis. The interplay between ZEB1-AS1 and miR-101/ZEB1 axis contributed to the proliferation and migration of CRC cells, and targeting this interplay could be a promising strategy for CRC treatment.

4.
Int J Clin Exp Pathol ; 11(2): 526-536, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31938138

RESUMO

MicroRNAs (miRs) dysregulation has been proven to play a crucial role in the initiation and progression of colorectal cancer (CRC). miR-9 functions as a tumor suppressor in many cancer types, including CRC. However, the precise role of miR-9 and the underlying molecular mechanisms that miR-9 involves in CRC progression remain largely unknown. In this study, it was reported that miR-9 had lower expression in CRC tissue samples than in those matched adjacent non-tumor tissues. Deregulated miR-9 expression was inverse correlated with the TNM stage, lymph node metastasis, and prognosis of CRC patients. Ectopic miR-9 expression suppressed CRC cell proliferation, migration, and invasion. Dual-Luciferase Reporter Assay confirmed that C-X-C Motif Chemokine Receptor 4 (CXCR4) was a direct miR-9 target, and the effects of miR-9 were mimicked through CXCR4 depletion in vitro. CXCR4 rescue experiments further verified that CXCR4 is a functional target of miR-9. Animal xenograft assays also provided evidence that miR-9 functions as a tumor suppressor via targeting CXCR4 in vivo. Mechanistically, miR-9 overexpression or CXCR4 knockdown influenced cell proliferation and epithelial-mesenchymal transition (EMT). Results suggest that miR-9 acts as a tumor suppressor in CRC progression by regulating CXCR4.

5.
J Biomater Sci Polym Ed ; 28(14): 1497-1510, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28532338

RESUMO

The amphiphilic PEG-b-PCL block copolymers were synthesized by ring-opening polymerization. The specific and selective antagonists of platelet activating factor, Ginkgolide B (GB), was successfully encapsulated in the synthesized PEG-PCL nanoparticles (NPs) with high Encapsulation Efficiency and Drug Loading. The synthesis of different PEG-PCL copolymers were confirmed with FTIR and 1H NMR spectra. The morphology and particles size distribution of cargo-free PEG-PCL NPs were studied by transmission electron microscope (TEM) analysis and Malvern laser particle analyzer. The bio-distribution and pharmacodynamics studies of GB were studied with Wistar mice as the animal models via tail injecting of GB-PEG-PCL NPs. Results from Malvern laser particle analyzer and TEM analysis illustrated that the cargo-free NPs showed narrow distribution and well separated particles size of about 60 nm in diameter. The in vitro experiment of GB-PEG-PCL NPs exhibited an extended release behavior. The bio-distribution data suggested that Tween-80 covered GB-PEG-PCL NPs showed a brain-targeting behavior. The pharmacodynamics results confirmed that the GB-PEG-PCL NPs had an obvious cerebral protection effect.


Assuntos
Encéfalo/metabolismo , Desenho de Fármacos , Ginkgolídeos/química , Interações Hidrofóbicas e Hidrofílicas , Lactonas/química , Poliésteres/química , Poliésteres/metabolismo , Polietilenoglicóis/química , Polietilenoglicóis/metabolismo , Animais , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Liberação Controlada de Fármacos , Ginkgolídeos/farmacocinética , Ginkgolídeos/farmacologia , Lactonas/farmacocinética , Lactonas/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C
6.
Curr Cancer Drug Targets ; 14(1): 91-103, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24245692

RESUMO

Gambogic acid (GA) has been approved by the Chinese Food and Drug Administration for the treatment of lung cancer in clinical trials. However, whether GA has chemosensitizing properties when combined with other chemotherapy agents in the treatment of lung cancer is not known. Here we investigated the effects of GA combined with adriamycin (ADM), a common chemotherapy agent, in regard to their activities and the possible mechanisms against lung cancer in vitro and in vivo. Cell viability results showed that sequential GA-ADM treatment was synergistic, while the reverse sequence and simultaneous treatments were antagonistic or additive, in lung cancer cells and ADM resistant cells, but not in normal cells. The combined use of GA and ADM synergistically displayed apoptosis-inducing activities in lung cancer cells. Moreover, GA in combination with ADM could promote PARP cleavage, enhance caspases activation and decrease the expression of anti-apoptotic proteins in lung cancer cells. The combined use of GA and ADM decreased the expression of P-glycoprotein and increased the accumulation of ADM in lung cancer cells. Furthermore, it was found that, prior to ADM treatment, GA could inhibit NF-κB signaling pathways, which have been validated to confer ADM resistance. The critical role of NF-κB was further confirmed by using PDTC, a NF-κB inhibitor, which significantly increased apoptosis induction by the combination of GA and ADM and inhibited ADM-induced ABCB1 upregulation. Importantly, our results indicated that the combination of GA and ADM exerted enhanced anti-tumor effects on A549 xenograft models through inhibiting NF-κB and P-glycoprotein, and attenuated ADM-induced cardiotoxicity. Collectively, these findings indicate that GA sensitizes lung cancer cells to ADM in vitro and in vivo, providing a rationale for the combined use of GA and ADM in lung cancer chemotherapy.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Doxorrubicina/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , NF-kappa B/metabolismo , Xantonas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Humanos , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , NF-kappa B/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Behav Brain Res ; 236(1): 270-282, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22985845

RESUMO

Microglia function as the primary immune effector cells in the brain and play a pivotal role in the neuroinflammatory processes which are critical component of neurodegenerative diseases. Alcohol abuse has been considered as one of the common reasons for neurodegeneration although the causative factors are poorly understood. Here, we investigated whether activated microglia were implicated in neurodegeneration and cognitive dysfunctions in adult rats after intermittent alcohol abuse. Rats were given orally a priming dose of 5 g/kg ethanol and then 3g/kg every 8h for 4 days, followed by a 3-day ethanol-withdrawal period. These 4 days of ethanol treatments were repeated four times intermittently to simulate the binge drinking of human alcoholics. Neurodegeneration and microglial activation were detected by Fluoro-Jade B staining, Golgi staining, immunohistochemistry and ELISA, respectively, while cognitive function was assessed by Morris water maze and novel object recognition. The results showed that microglial activation and inflammatory cytokine expression were obvious in the parietal association cortex, entorhinal cortex and hippocampus accompanied by neurodegeneration following ethanol treatment. Moreover, learning and memory abilities also declined following ethanol treatments. However, the hypertrophied microglia disappeared accompanied by the decrease of inflammatory cytokines levels on day 4, and ramified microglial proliferated significantly on day 14 after ethanol withdrawal, along with a recovery from neuronal damage and cognitive impairment. Thus, the present study indicated that activated microglia might be involved in neurodegeneration and cognitive dysfunctions induced by intermittent ethanol exposure, and neurotrophic microglia appear to have a contribution to the recovery during abstinence.


Assuntos
Morte Celular/efeitos dos fármacos , Depressores do Sistema Nervoso Central/toxicidade , Transtornos Cognitivos/induzido quimicamente , Transtornos Cognitivos/psicologia , Etanol/toxicidade , Ativação de Macrófagos/fisiologia , Microglia/fisiologia , Neurônios/efeitos dos fármacos , Animais , Consumo Excessivo de Bebidas Alcoólicas , Encéfalo/citologia , Encéfalo/patologia , Depressores do Sistema Nervoso Central/sangue , Citocinas/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Etanol/sangue , Fluoresceínas , Imunofluorescência , Corantes Fluorescentes , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Degeneração Neural , Compostos Orgânicos , Desempenho Psicomotor/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Reconhecimento Psicológico/efeitos dos fármacos , Recuperação de Função Fisiológica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...