Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(8)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37112039

RESUMO

Shape memory polymers (SMPs) with intelligent deformability have shown great potential in the field of aerospace, and the research on their adaptability to space environments has far-reaching significance. Chemically cross-linked cyanate-based SMPs (SMCR) with excellent resistance to vacuum thermal cycling were obtained by adding polyethylene glycol (PEG) with linear polymer chains to the cyanate cross-linked network. The low reactivity of PEG overcame the shortcomings of high brittleness and poor deformability while endowing cyanate resin with excellent shape memory properties. The SMCR with a glass transition temperature of 205.8 °C exhibited good stability after vacuum thermal cycling. The SMCR maintained a stable morphology and chemical composition after repeated high-low temperature cycle treatments. The SMCR matrix was purified by vacuum thermal cycling, which resulted in an increase in its initial thermal decomposition temperature by 10-17 °C. The continuous vacuum high and low temperature relaxation of the vacuum thermal cycling increased the cross-linking degree of the SMCR, which improved the mechanical properties and thermodynamic properties of SMCR: the tensile strength of SMCR was increased by about 14.5%, the average elastic modulus was greater than 1.83 GPa, and the glass transition temperature increased by 5-10 °C. Furthermore, the shape memory properties of SMCR after vacuum thermal cycling treatment were well maintained due to the stable triazine ring formed by the cross-linking of cyanate resin. This revealed that our developed SMCR had good resistance to vacuum thermal cycling and thus may be a good candidate for aerospace engineering.

2.
Polymers (Basel) ; 14(22)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36433005

RESUMO

Rubber materials are widely used in aerospace, automotive, smart devices and artificial skin. It is significant to address the aging susceptibility of conventional vulcanized rubber and to impart it rapid self-healing performance for destructive crack damage. Herein, a novel supramolecular rubber elastomer is prepared by introducing metal coordination between carboxyl-terminated polybutadiene and polystyrene-vinylpyridine copolymer. Based on the metal coordination interaction, the elastomer exhibits shape memory and self-healing properties. Moreover, a rapid closure-repair process of destructive cracks is achieved by presetting temporary shapes. This shape memory-assisted self-repair model is shown to be an effective means for rapid repair of severe cracks. An approach to enhance the mechanical and self-healing properties of elastomer was demonstrated by adding appropriate amounts of oxidized carbon nano-onions (O-CNO) into the system. The tensile strength of the elastomer with an O-CNOs content of 0.5 wt% was restored to 83 ± 10% of the original sample after being repaired at 85 °C for 6 h. This study confirms that metal coordination interaction is an effective method for designing shape memory self-healing rubber elastomer. The shape memory-assisted self-healing effect provides a reference for the rapid self-repairing of severe cracks.

3.
ACS Appl Mater Interfaces ; 13(41): 49556-49566, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34636235

RESUMO

Studies which regulate macroscopic wetting states on determined surfaces in multiphase media are of far-reaching significance but are still in the preliminary stage. Herein, inspired by the wettability subassembly of fish scales, Namib desert beetle shell, and lotus leaf upper side, interfaces in the air-water-oil system are programmed by defect engineering to tailor the anti-wetting evolution from double to triple liquid repellency states. By controlling the visible light irradiation and plasma treatment, surface oxygen vacancies on CuxO@TiO2 nanowires (NWs) can be healed or reconstructed. The original membrane or the membrane after plasma treatment possesses abundant surface oxygen vacancies, and the homogeneous hydrophilic membrane shows only double anti-wetting states in the water-oil system. By the unsaturated visible light irradiation time, the surface oxygen vacancy partially healed, the heterogeneous hydrophilic-hydrophobic components occupied the membrane surface, and the anti-wetting state finally changed from double to triple in the air-water-oil system. After the illumination time reaches saturation, it promotes the healing of all surface oxygen vacancies, and the membrane surface only contains uniform hydrophobic components and only maintains double anti-wetting state in the air-oil system. The mechanism of the triple anti-wetting state on a heterogeneous surface is expounded by establishing a wetting model. The wetting state and the adhesion state of the CuxO@TiO2 NW membrane show regional specificity by controlling the illumination time and region. The underwater oil droplets exhibit the "non-adhesive" and "adhesive" state in a region with unsaturated irradiation time or in an unirradiated region, respectively. Underwater oil droplet manipulation can be accomplished easily based on switchable wettability and adhesion. Current studies reveal that defect engineering can be extended to anti-wetting evolution in the air-water-oil system. Constructing an anti-wetting interface by heterogeneous components provides reference for designing the novel anti-wetting interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...