Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 867
Filtrar
1.
World J Gastrointest Surg ; 16(4): 1109-1120, 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38690052

RESUMO

BACKGROUND: The incidence of gastric cancer has significantly increased in recent years. Surgical resection is the main treatment, but the method of digestive tract reconstruction after gastric cancer surgery remains controversial. In the current study, we sought to explore a reasonable method of digestive tract reconstruction and improve the quality of life and nutritional status of patients after surgery. To this end, we statistically analyzed the clinical results of patients with gastric cancer who underwent jejunal interposition double-tract reconstruction (DTR) and esophageal jejunum Roux-en-Y reconstruction (RY). AIM: To explore the application effect of DTR in total laparoscopic radical total gastrectomy (TLTG) and evaluate its safety and efficacy. METHODS: We collected the relevant data of 77 patients who underwent TLTG at the Fourth Hospital of Hebei Medical University from October 2021 to January 2023. Among them, 35 cases were treated with DTR, and the remaining 42 cases were treated with traditional RY. After 1:1 propensity score matching, the cases were grouped into 31 cases per group, with evenly distributed data. The clinical characteristics and short- and long-term clinical outcomes of the two groups were statistically analyzed. RESULTS: The two groups showed no significant differences in basic data, intraoperative blood loss, number of lymph node dissections, first defecation time after operation, postoperative hospital stay, postoperative complications, and laboratory examination results on the 1st, 3rd, and 5th days after operation. The operation time of the DTR group was longer than that of the RY group [(307.58 ± 65.14) min vs (272.45 ± 62.09) min, P = 0.016], but the first intake of liquid food in the DTR group was shorter than that in the RY group [(4.45 ± 1.18) d vs (6.0 ± 5.18) d, P = 0.028]. The incidence of reflux heartburn (Visick grade) and postoperative gallbladder disease in the DTR group was lower than that in the RY group (P = 0.033 and P = 0.038). Although there was no significant difference in body weight, hemoglobin, prealbumin, and albumin between the two groups at 1,3 and 6 months after surgery, the diet of patients in the DTR group was better than that in the RY group (P = 0.031). CONCLUSION: The clinical effect of DTR in TLTG is better than that of RY, indicating that it is a more valuable digestive tract reconstruction method in laparoscopic gastric cancer surgery.

2.
Small ; : e2402485, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38804825

RESUMO

Junctions based on electronic ballistic waveguides, such as semiconductor nanowires or nanoribbons with transverse structural variations in the order of a large fraction of their Fermi wavelength, are suggested as highly efficient thermoelectric (TE) devices. Full harnessing of their potential requires a capability to either deterministically induce structural variations that tailor their transmission properties at the Fermi level or alternatively to form waveguides that are disordered (chaotic) but can be structurally modified continuously until favorable TE properties are achieved. Well-established methods to realize either of these routes do not exist. Here, disordered bismuth (Bi) waveguides are reported, which are both formed and structurally tuned by electromigration until their efficiency as TE devices is maximized. In accordance with theory, the conductance of the most efficient TE waveguides is in the sub quantum of conductance regime. The stability of these structures is found to be substantially higher than other actively studied devices such as single molecule junctions.

3.
J Am Chem Soc ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38776361

RESUMO

Pancreatic cancer is a highly fatal disease, and existing treatment methods are ineffective, so it is urgent to develop new effective treatment strategies. The high dependence of pancreatic cancer cells on glucose and glutamine suggests that disrupting this dependency could serve as an alternative strategy for pancreatic cancer therapy. We identified the vital genes glucose transporter 1 (GLUT1) and alanine-serine-cysteine transporter 2 (ASCT2) through bioinformatics analysis, which regulate glucose and glutamine metabolism in pancreatic cancer, respectively. Human serum albumin nanoparticles (HSA NPs) for delivery of GLUT1 and ASCT2 inhibitors, BAY-876/V-9302@HSA NPs, were prepared by a self-assembly process. This nanodrug inhibits glucose and glutamine uptake of pancreatic cancer cells through the released BAY-876 and V-9302, leading to nutrition deprivation and oxidative stress. The inhibition of glutamine leads to the inhibition of the synthesis of the glutathione, which further aggravates oxidative stress. Both of them lead to a significant increase in reactive oxygen species, activating caspase 1 and GSDMD and finally inducing pyroptosis. This study provides a new effective strategy for orthotopic pancreatic cancer treatment by dual starvation-induced pyroptosis. The study for screening metabolic targets using bioinformatics analysis followed by constructing nanodrugs loaded with inhibitors will inspire future targeted metabolic therapy for pancreatic cancer.

4.
Int J Food Microbiol ; 418: 110741, 2024 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-38733636

RESUMO

Plant volatile organic compounds (PVOCs) have gained increasing attention for their role in preventing fungal spoilage and insect contamination in postharvest agro-products owing to their effectiveness and sustainability. In this study, the essential oil was extracted from fresh M. alternifolia (tea tree) leaves, and the fumigation vapor of tea tree oil (TTO) completely inhibited the growth of Aspergillus flavus on agar plates at a concentration of 1.714 µL/mL. Terpinen-4-ol was identified as the major component (40.76 %) of TTO volatiles analyzed using headspace gas chromatography-mass spectrometry. Terpinen-4-ol vapor completely inhibited the A. flavus growth on agar plates and 20 % moisture wheat grain at 0.556 and 1.579 µL/mL, respectively, indicating that terpinen-4-ol serves as the main antifungal constituent in TTO volatiles. The minimum inhibitory concentration of terpinen-4-ol in liquid-contact culture was 1.6 µL/mL. Terpinen-4-ol treatment caused depressed, wrinkled, and punctured mycelial morphology and destroyed the plasma membrane integrity of A. flavus. Metabolomics analysis identified significant alterations in 93 metabolites, with 79 upregulated and 14 downregulated in A. flavus mycelia exposed to 1.6 µL/mL terpinen-4-ol for 6 h, involved in multiple cellular processes including cell membrane permeability and integrity, the ABC transport system, pentose phosphate pathway, and the tricarboxylic acid cycle. Biochemical analysis and 2,7-dichlorofluorescein diacetate staining showed that terpinen-4-ol induced oxidative stress and mitochondrial dysfunction in A. flavus mycelia. This study provides new insights into the antifungal effects of the main TTO volatile compounds terpinen-4-ol on the growth of A. flavus.


Assuntos
Aspergillus flavus , Óleo de Melaleuca , Terpenos , Triticum , Aspergillus flavus/efeitos dos fármacos , Aspergillus flavus/crescimento & desenvolvimento , Óleo de Melaleuca/farmacologia , Terpenos/farmacologia , Triticum/microbiologia , Antifúngicos/farmacologia , Compostos Orgânicos Voláteis/farmacologia , Testes de Sensibilidade Microbiana , Cromatografia Gasosa-Espectrometria de Massas , Grão Comestível/microbiologia , Conservação de Alimentos/métodos
5.
Nano Lett ; 24(22): 6673-6682, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38779991

RESUMO

Reliably discerning real human faces from fake ones, known as antispoofing, is crucial for facial recognition systems. While neuromorphic systems offer integrated sensing-memory-processing functions, they still struggle with efficient antispoofing techniques. Here we introduce a neuromorphic facial recognition system incorporating multidimensional deep ultraviolet (DUV) optoelectronic synapses to address these challenges. To overcome the complexity and high cost of producing DUV synapses using traditional wide-bandgap semiconductors, we developed a low-temperature (≤70 °C) solution process for fabricating DUV synapses based on PEA2PbBr4/C8-BTBT heterojunction field-effect transistors. This method enables the large-scale (4-in.), uniform, and transparent production of DUV synapses. These devices respond to both DUV and visible light, showing multidimensional features. Leveraging the unique ability of the multidimensional DUV synapse (MDUVS) to discriminate real human skin from artificial materials, we have achieved robust neuromorphic facial recognition with antispoofing capability, successfully identifying genuine human faces with an accuracy exceeding 92%.

6.
Abdom Radiol (NY) ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38727742

RESUMO

PURPOSE: Although microsatellite stability/Epithelial-mesenchymal transition (MSS/EMT) subtypes have been reported in multiple cancer prognosis studies, strong confounding factors between MSS/EMT (usually with Lauren's diffuse phenotype) and diffuse gastric cancer (GC) may obscure the independent prognostic value of diffuse GC. Additionally, recent studies suggest a strong correlation between mural stratification based on CT and diffuse GC. This study aims to investigate potential prognostic factors of MSS diffuse GC using mural stratification and to develop a risk assessment model. METHODS: This retrospective study included 131 patients with MSS diffuse GC who underwent radical surgery. Univariate and multivariate Cox proportional hazards regression analysis was used to identify model predictors and construct a nomogram for overall survival (OS) and recurrence-free survival (RFS) risks. The model's performance was evaluated using ROC, accuracy, and C-index. Internal validation of the model was conducted using the bootstrap resampling method. RESULTS: Among 131 cases, 60 cases (45.8%) exhibited grade 2 mural stratification, which correlated with a poorer tumor prognosis and a more invasive phenotype. Furthermore, a nomogram for predicting OS and RFS prognosis was established based on multivariate results (age, extranodal invasion, mural stratification, and/or P53). The nomogram demonstrated excellent performance, with an AUC of 0.859 (95% CI 0.794-0.924) for OS and 0.859 (95% CI 0.789-0.929) for RFS. Internal validation using 1000 bootstrap samples yielded AUC values of 0.845 and 0.846 for OS and RFS, respectively. CONCLUSION: Grade 2 mural stratification based on CT imaging revealed a more aggressive invasive phenotype, characterized by increased LN metastasis, higher rates of peritoneal metastasis, and a poorer short-term prognosis. Furthermore, the CT phenotype-based nomogram demonstrates favorable discrimination and calibration, enabling convenient individual short-term prognostic evaluation following resection of MSS diffuse GC.

7.
Am J Cancer Res ; 14(4): 1747-1767, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726268

RESUMO

To develop nomogram models for predicting the overall survival (OS) and cancer-specific survival (CSS) of early-onset gastric cancer (EOGC) patients. A total of 1077 EOGC patients from the Surveillance, Epidemiology, and End Results (SEER) database were included, and an additional 512 EOGC patients were recruited from the Fourth Hospital of Hebei Medical University, serving as an external test set. Univariate and multivariate Cox regression analyses were performed to identify independent prognostic factors. Based on these factors, two nomogram models were established, and web-based calculators were developed. These models were validated using receiver operating characteristics (ROC) curve analysis, calibration curves, and decision curve analysis (DCA). Multivariate analysis identified gender, histological type, stage, N stage, tumor size, surgery, primary site, and lung metastasis as independent prognostic factors for OS and CSS in EOGC patients. Calibration curves and DCA curves demonstrated that the two constructed nomogram models exhibited good performance. These nomogram models demonstrated superior performance compared to the 7th edition of the AJCC tumor-node-metastasis (TNM) classification (internal validation set: 1-year OS: 0.831 vs 0.793, P = 0.072; 1-year CSS: 0.842 vs 0.816, P = 0.190; 3-year OS: 0.892 vs 0.857, P = 0.039; 3-year CSS: 0.887 vs 0.848, P = 0.018; 5-year OS: 0.906 vs 0.880, P = 0.133; 5-year CSS: 0.900 vs 0.876, P = 0.109). In conclusion, this study developed two nomogram models: one for predicting OS and the other for CSS of EOGC patients, offering valuable assistance to clinicians.

8.
Am J Cancer Res ; 14(4): 1675-1684, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38726280

RESUMO

Mitoxantrone Hydrochloride Injection for Tracing (MHI), a modified new drug marketed in China, has been approved by the National Medical Products Administration for lymph node tracing in thyroid cancer and sentinel lymph node biopsy in breast cancer. This single-center, single-blind, dose-escalation phase I clinical trial aimed to investigate the safety of MHI on lymph node tracing in gastric cancer. In this study, four dose groups (1.0 mL, 1.5 mL, 2.0 mL, and 3.0 mL) with 3 gastric cancer patients in each group were set. The safety, tolerability, pharmacokinetics and preliminary efficacy of different doses were investigated. Results showed that none of the patients experienced dose-limiting toxicity or developed serious adverse events or adverse drug reactions. Pharmacokinetic analyses revealed minimal absorption of the tracer, resulting in low and transient blood drug concentrations across all participants. The mean time to peak concentration was (0.561 ± 0.3728) h (with mean peak concentration (Cmax) of 10.300 ng/mL), (0.500 ± 0.0167) h (mean Cmax of 13.687 ng/mL), (0.494 ± 0.0096) h (mean Cmax of 30.933 ng/mL), and (0.661 ± 0.2791) h (mean Cmax of 21.067 ng/mL) in the 1.0 mL, 1.5 mL, 2.0 mL, and 3.0 mL dose groups, respectively. The mean lymph node staining rates were 21.0%, 24.7%, 32.5%, and 44.5%, and the mean metastatic lymph node staining rates were 20.6%, 36.1%, 42.4%, and 21.0% in each group. This study confirmed that MHI was safe, well-tolerated, and had low systemic effects when used for lymphatic tracing of gastric cancer, and the tracing effect was better in the 3 mL dose group. This trail was registered on the website of Centre for Drug Evaluation State Drug and Food Administration (http://www.chinadrugtrials.org.cn/index.html) with the name of clinical study of lymphatic tracer in lymph node tracing of gastric cancer, the code was CTR20201906.

9.
Small Methods ; : e2400084, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38738733

RESUMO

Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.

10.
J Agric Food Chem ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38820047

RESUMO

Atrazine (ATR) is a widely used herbicide worldwide that can cause kidney damage in humans and animals by accumulation in water and soil. Lycopene (LYC), a carotenoid with numerous biological activities, plays an important role in kidney protection due to its potent antioxidant and anti-inflammatory effects. The current study sought to investigate the role of interactions between mtDNA and the cGAS-STING signaling pathway in LYC mitigating PANoptosis and inflammation in kidneys induced by ATR exposure. In our research, 350 mice were orally administered LYC (5 mg/kg BW/day) and ATR (50 or 200 mg/kg BW/day) for 21 days. Our results reveal that ATR exposure induces a decrease in mtDNA stability, resulting in the release of mtDNA into the cytoplasm through the mPTP pore and the BAX pore and the mobilization of the cGAS-STING pathway, thereby inducing renal PANoptosis and inflammation. LYC can inhibit the above changes caused by ATR. In conclusion, LYC inhibited ATR exposure-induced histopathological changes, renal PANoptosis, and inflammation by inhibiting the cGAS-STING pathway. Our results demonstrate the positive role of LYC in ATR-induced renal injury and provide a new therapeutic target for treating renal diseases in the clinic.

11.
Artigo em Inglês | MEDLINE | ID: mdl-38577727

RESUMO

BACKGROUND: The cerebellum is a key structure involved in balance and motor control, and has become a new stimulation target in brain regulation technology. Interference theta-burst simulation (iTBS) is a novel simulation mode of repetitive transcranial magnetic simulation. However, the impact of cerebellar iTBS on balance function and gait in stroke patients is still unknown. AIM: The aim of this study was to determine whether cerebellar iTBS can improve function, particularly balance and gait, in patients with post-stroke hemiplegia. DESIGN: This study is a randomized, double-blind, sham controlled clinical trial. SETTING: The study was carried out at the Department of Rehabilitation Medicine in a general hospital. POPULATION: Patients with stroke with first unilateral lesions were enrolled in the study. METHODS: Thirty-six patients were randomly assigned to the cerebellar iTBS group or sham stimulation group. The cerebellar iTBS or pseudo stimulation site is the ipsilateral cerebellum on the paralyzed side, which is completed just before daily physical therapy. The study was conducted five times a week for two consecutive weeks. All patients were assessed before the intervention (T0) and at the end of 2 weeks of treatment (T1), respectively. The primary outcome was the Berg Balance Scale (BBS), while secondary outcome measures included the Fugl Meyer Lower Limb Assessment Scale (FMA-LE), timed up and go (TUG), Barthel Index (BI), and gait analysis. RESULTS: After 2 weeks of intervention, the BBS, FMA-LE, TUG, and BI score in both the iTBS group and the sham group were significantly improved compared to the baseline (all P<0.05). Also, there was a significant gait parameter improvement including the cadence, stride length, velocity, step length compared to the baseline (P<0.05) in the iTBS group, but only significant improvement in cadence was identified in the sham group (P<0.05). Intergroup comparison showed that the BBS (P<0.001), FMA-LE (P<0.001), and BI (P=0.002) in the iTBS group were significantly higher than those in the sham group, and the TUG in the iTBS was significantly lower than that in the sham group (P=0.002). In addition, there were significant differences in cadence (P=0.029), strip length (P=0.046), gain velocity (P=0.002), and step length of affected lower limb (P=0.024) between the iTBS group and the sham iTBS group. CONCLUSIONS: Physical therapy is able to improve the functional recovery in hemiplegic patients after stroke, but the cerebellar iTBS can facilitate and accelerate the recovery, particularly the balance function and gait. Cerebellar iTBS could be an efficient and facilitative treatment for patients with stroke. CLINICAL REHABILITATION IMPACT: Cerebellar iTBS provides a convenient and efficient treatment modality for functional recovery of patients with stroke, especially balance function and gait.

12.
World J Gastrointest Oncol ; 16(3): 1029-1045, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38577446

RESUMO

BACKGROUND: CALD1 has been discovered to be abnormally expressed in a variety of malignant tumors, including gastric cancer (GC), and is associated with tumor progression and immune infiltration; however, the roles and mechanisms of CALD1 in epithelial-mesenchymal transition (EMT) in GC are unknown. AIM: To investigate the role and mechanism of CALD1 in GC progression, invasion, and migration. METHODS: In this study, the relationship between CALD1 and GC, as well as the possible network regulatory mechanisms of CALD1, was investigated by bioinformatics and validated by experiments. CALD1-siRNA was synthesized and used to transfect GC cells. Cell activity was measured using the CCK-8 method, cell migration and invasive ability were measured using wound healing assay and Transwell assay, and the expression levels of relevant genes and proteins in each group of cells were measured using qRT-PCR and Western blot. A GC cell xenograft model was established to verify the results of in vitro experiments. RESULTS: Bioinformatics results showed that CALD1 was highly expressed in GC tissues, and CALD1 was significantly higher in EMT-type GC tissues than in tissues of other types of GC. The prognosis of patients with high expression of CALD1 was worse than that of patients with low expression, and a prognostic model was constructed and evaluated. The experimental results were consistent with the results of the bioinformatics analysis. The expression level of CALD1 in GC cell lines was all higher than that in gastric epithelial cell line GES-1, with the strongest expression found in AGS and MKN45 cells. Cell activity was significantly reduced after CALD1-siRNA transfection of AGS and MKN45 cells. The ability of AGS and MKN45 cells to migrate and invade was reduced after CALD1-siRNA transfection, and the related mRNA and protein expression was altered. According to bioinformatics findings in GC samples, the CALD1 gene was significantly associated with the expression of members of the PI3K-AKT-mTOR signaling pathway as well as the EMT signaling pathway, and was closely related to the PI3K-Akt signaling pathway. Experimental validation revealed that upregulation of CALD1 increased the expression of PI3K, p-AKT, and p-mTOR, members of the PI3K-Akt pathway,while decreasing the expression of PTEN; PI3K-Akt inhibitor treatment decreased the expression of PI3K, p-AKT, and p-mTOR in cells overexpressing CALD1 (still higher than that in the normal group), but increased the expression of PTEN (still lower than that in the normal group). CCK-8 results revealed that the effect of CALD1 on tumor cell activity was decreased by the addition of the inhibitor. Scratch and Transwell experiments showed that the effect of CALD1 on tumor cell migration and invasion was weakened by the addition of the PI3K-Akt inhibitor. The mRNA and protein levels of EMT-related genes in AGS and MKN45 cells were greatly altered by the overexpression of CALD1, whereas the effect of overexpression of CALD1 was significantly weakened by the addition of the PI3K-Akt inhibitor. Animal experiments showed that tumour growth was slow after inhibition of CALD1, and the expression of some PI3K-Akt and EMT pathway proteins was altered. CONCLUSION: Increased expression of CALD1 is a key factor in the progression, invasion, and metastasis of GC, which may be associated with regulating the PI3K-Akt pathway to promote EMT.

13.
Mol Carcinog ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656643

RESUMO

Accumulating evidence suggests that lymphangiogenesis plays a crucial role in lymphatic metastasis, leading to tumor immune tolerance. However, the specific mechanism remains unclear. In this study, miR-431-5p was markedly downregulated in both gastric cancer (GC) tissues and plasma exosomes, and its expression were correlated negatively with LN metastasis and poor prognosis. Mechanistically, miR-431-5p weakens the TGF-ß1/SMAD2/3 signaling pathway by targeting ZEB1, thereby suppressing the secretion of VEGF-A and ANG2, which in turn hinders angiogenesis, lymphangiogenesis, and lymph node (LN) metastasis in GC. Experiments using a popliteal LN metastasis model in BALB/c nude mice demonstrated that miR-431-5p significantly reduced popliteal LN metastasis. Additionally, miR-431-5p enhances the efficacy of anti-PD1 treatment, particularly when combined with galunisertib, anti-PD1 treatment showing a synergistic effect in inhibiting GC progression in C57BL/6 mice. Collectively, these findings suggest that miR-431-5p may modulate the TGF-ß1/SMAD2/3 pathways by targeting ZEB1 to impede GC progression, angiogenesis, and lymphangiogenesis, making it a promising therapeutic target for GC management.

14.
Environ Pollut ; 350: 124002, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38636834

RESUMO

Halogenated aromatic pollutants (HAPs) including polychlorinated dibenzo-p-dioxins/furans (PCDD/Fs), polychlorinated biphenyls (PCBs), polybrominated dibenzo-p-dioxins/furans (PBDD/Fs), and polybrominated diphenyl ethers (PBDEs) exhibit diverse toxicities and bio-accumulation in animals, thereby imposing risks on human via animal-derived food (ADF) consumption. Here we examined these HAPs in routine ADFs from South China and observed that PBDEs and PCBs showed statistically higher concentrations than PCDD/Fs and PBDD/Fs. PCDD/Fs and PCBs in these ADFs were mainly from the polluted feed and habitat of animals, except PCDD/Fs in egg, which additionally underwent selective biotransformation/progeny transfer after the maternal intake of PCDD/F-polluted stuff. PBDEs and PBDD/Fs were mostly derived from the extensive use of deca-BDE and their polluted environments. Significant interspecific differences were mainly observed for DL-PCBs and partly for PBDD/Fs and PBDEs, which might be caused by their distinct transferability/biodegradability in animals and the different living habit and habitat of animals. The dietary intake doses (DIDs) of these HAPs via ADF consumption were all highest for toddlers, then teenagers and adults. Milk, egg, and fish contributed most to the DIDs and risks for toddlers and teenagers, which results of several cities exceeded the recommended thresholds and illustrated noteworthy risks. Pork, fish, and egg were the top three risk contributors for adults, which carcinogenic and non-carcinogenic risks were both acceptable. Notably, PBDD/Fs showed the lowest concentrations but highest contributions to the total risks of these HAPs, thereby meriting continuous attention.


Assuntos
Poluentes Ambientais , Contaminação de Alimentos , Éteres Difenil Halogenados , Bifenilos Policlorados , China , Animais , Humanos , Contaminação de Alimentos/análise , Contaminação de Alimentos/estatística & dados numéricos , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Poluentes Ambientais/análise , Dibenzodioxinas Policloradas/análise , Medição de Risco , Exposição Dietética/estatística & dados numéricos , Adulto , Criança , Monitoramento Ambiental , Ovos/análise
15.
bioRxiv ; 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38464165

RESUMO

The primate amygdala serves to evaluate emotional content of sensory inputs and modulate emotional and social behaviors; prefrontal, multisensory and autonomic aspects of these circuits are mediated predominantly via the basal (BA), lateral (LA), and central (CeA) nuclei, respectively. Based on recent electrophysiological evidence suggesting mesoscale (millimeters-scale) nature of intra-amygdala functional organization, we have investigated the connectivity of these nuclei using infrared neural stimulation (INS) of single mesoscale sites coupled with mapping in ultrahigh field 7T functional magnetic resonance imaging (fMRI), namely INS-fMRI. Following stimulation of multiple sites within amygdala of single individuals, a 'mesoscale functional connectome' of amygdala connectivity (of BA, LA, and CeA) was obtained. This revealed the mesoscale nature of connected sites, the spatial patterns of functional connectivity, and the topographic relationships (parallel, sequential, or interdigitating) of nucleus-specific connections. These findings provide novel perspectives on the brainwide circuits modulated by the amygdala.

16.
Artigo em Inglês | MEDLINE | ID: mdl-38435123

RESUMO

Background: Some patients with chronic obstructive pulmonary disease (COPD) benefit from glucocorticoid (GC) treatment, but its mechanism is unclear. Objective: With the help of the Gene Expression Omnibus (GEO) database, the key genes and miRNA-mRNA related to the treatment of COPD by GCs were discussed, and the potential mechanism was explained. Methods: The miRNA microarray dataset (GSE76774) and mRNA microarray dataset (GSE36221) were downloaded, and differential expression analysis were performed. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed on the differentially expressed genes (DEGs). The protein interaction network of the DEGs in the regulatory network was constructed with the STRING database, and the key genes were screened through Cytoscape. Potential downstream target genes regulated by differentially expressed miRNAs (DEMs) were predicted by the miRWalk3.0 database, and miRNA-mRNA regulatory networks were constructed. Finally, some research results were validated. Results: ① Four DEMs and 83 DEGs were screened; ② GO and KEGG enrichment analysis mainly focused on the PI3K/Akt signalling pathway, ECM receptor interaction, etc.; ③ CD2, SLAMF7, etc. may be the key targets of GC in the treatment of COPD; ④ 18 intersection genes were predicted by the mirwalk 3.0 database, and 9 pairs of miRNA-mRNA regulatory networks were identified; ⑤ The expression of miR-320d-2 and TFCP2L1 were upregulated by dexamethasone in the COPD cell model, while the expression of miR-181a-2-3p and SLAMF7 were downregulated. Conclusion: In COPD, GC may mediate the expression of the PI3K/Akt signalling pathway through miR-181a-2-3p, miR-320d-2, miR-650, and miR-155-5p, targeting its downstream signal factors. The research results provide new ideas for RNA therapy strategies of COPD, and also lay a foundation for further research.


Assuntos
MicroRNAs , Doença Pulmonar Obstrutiva Crônica , Humanos , Glucocorticoides/farmacologia , Glucocorticoides/uso terapêutico , RNA Mensageiro/genética , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/genética , MicroRNAs/genética
17.
Environ Toxicol ; 39(6): 3734-3745, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38546343

RESUMO

The development of resistance to Docetaxel (DTX) compromises its therapeutic efficacy and worsens the prognosis of prostate cancer (PCa), while the underlying regulatory mechanism remains poorly understood. In this study, METTL14 was found to be upregulated in DTX-resistant PCa cells and PCa tissues exhibiting progressive disease during DTX therapy. Furthermore, overexpression of METTL14 promoted the development of resistance to DTX in both in vitro and in vivo. Interestingly, it was observed that the hypermethylation of the E2F1 targeting site within DTX-resistant PCa cells hindered the binding ability of E2F1 to the promoter region of METTL14, thereby augmenting its transcriptional activity. Consequently, this elevated expression level of METTL14 facilitated m6A-dependent processing of pri-miR-129 and subsequently led to an increase in miR-129-5p expression. Our study highlights the crucial role of the E2F1-METTL14-miR-129-5p axis in modulating DTX resistance in PCa, underscoring METTL14 as a promising therapeutic target for DTX-resistant PCa patients.


Assuntos
Antineoplásicos , Docetaxel , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Metiltransferases , MicroRNAs , Neoplasias da Próstata , MicroRNAs/genética , MicroRNAs/metabolismo , Masculino , Docetaxel/farmacologia , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Resistencia a Medicamentos Antineoplásicos/genética , Epigênese Genética/efeitos dos fármacos , Linhagem Celular Tumoral , Metiltransferases/genética , Metiltransferases/metabolismo , Animais , Antineoplásicos/farmacologia , Fator de Transcrição E2F1/genética , Fator de Transcrição E2F1/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Nus
18.
Nutrition ; 123: 112408, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38513525

RESUMO

BACKGROUND: Sarcopenia, defined as decreased muscle mass and function, correlates with postoperative morbidity and mortality in cancer surgery. However, sarcopenia's impact specifically following robotic gastrectomy for gastric cancer has not been clearly defined. This study aimed to determine the influence of sarcopenia on short- and long-term clinical outcomes after robotic gastrectomy for gastric cancer. METHODS: This retrospective study analyzed 381 gastric cancer patients undergoing robotic gastrectomy. Sarcopenia was diagnosed by preoperative computed tomography (CT) body composition analysis. Propensity score matching created 147 pairs of sarcopenia and nonsarcopenia patients for comparison. Outcomes included postoperative complications, survival, inflammatory markers, length of stay, intensive care unit (ICU) transfer, and readmissions. RESULTS: Sarcopenia patients exhibited significantly higher rates of overall (53.7% versus 21.1%, P < 0.001), serious (12.9% versus 4.1%, P = 0.007), and grade III-IV complications compared to nonsarcopenia pairs after matching. Sarcopenia independently predicted reduced 3-years overall (HR = 2.53, 95% CI: 1.19-5.40, P = 0.016) and disease-free survival (HR = 1.99, 95% CI: 1.09-3.66, P = 0.026). Sarcopenia patients also showed heightened postoperative leukocyte, neutrophil, platelet, platelet to lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and monocyte to lymphocyte ratio (MLR) levels alongside suppressed lymphocytes, monocytes, and neutrophil to lymphocyte ratio (NLR). CONCLUSION: Preoperative sarcopenia is correlated with increased postoperative complications and poorer long-term survival in gastric cancer patients undergoing robotic gastrectomy. Sarcopenia assessment can optimize preoperative risk stratification and perioperative management in this population.


Assuntos
Gastrectomia , Complicações Pós-Operatórias , Pontuação de Propensão , Procedimentos Cirúrgicos Robóticos , Sarcopenia , Neoplasias Gástricas , Humanos , Sarcopenia/etiologia , Neoplasias Gástricas/cirurgia , Neoplasias Gástricas/complicações , Masculino , Feminino , Estudos Retrospectivos , Gastrectomia/efeitos adversos , Gastrectomia/métodos , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/etiologia , Procedimentos Cirúrgicos Robóticos/métodos , Procedimentos Cirúrgicos Robóticos/efeitos adversos , Idoso , Pessoa de Meia-Idade , Prognóstico , Período Pré-Operatório , Tempo de Internação/estatística & dados numéricos
19.
Front Endocrinol (Lausanne) ; 15: 1333033, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38352711

RESUMO

Background: Bariatric surgery is an effective approach to weight loss, which may also affect thyroid function. However, alteration in thyroid-stimulating hormone (ΔTSH) and thyroid hormones after bariatric surgery and the relationship between thyroid function and postoperative weight loss still remains controversial. Methods: Data were collected from euthyroid patients with obesity who underwent sleeve gastrectomy and Roux-en-Y gastric bypass from 2017 to 2022. The alterations of free thyroxine (FT4), free triiodothyronine (FT3), total thyroxine (TT4), total triiodothyronine (TT3), and TSH were calculated 1 year after surgery. Pearson correlation analysis was used to assess the correlation between the percentage of total weight loss (%TWL) and ΔTSH. Multivariable linear regression was utilized to determine the association between %TWL and ΔTSH. Results: A total of 256 patients were included in our study. The mean %TWL was 28.29% after 1 year. TSH decreased from 2.33 (1.67, 3.04) uIU/mL to 1.82 (1.21, 2.50) uIU/mL (P < 0.001), FT3 decreased from 3.23 ± 0.42 pg/mL to 2.89 ± 0.41 pg/mL (P < 0.001), FT4 decreased from 1.11 ± 0.25 ng/dL to 1.02 ± 0.25 ng/dL (P < 0.001), TT3 decreased from 1.13 (1.00, 1.25) ng/mL to 0.89 (0.78, 1.00) ng/mL (P < 0.001), and TT4 decreased from 8.28 ± 1.69 ug/mL to 7.82 ± 1.68 ug/mL 1 year postoperatively (P < 0.001). %TWL was found to be significantly correlated to ΔTSH by Pearson correlation analysis (Pearson correlation coefficient = 0.184, P = 0.003), indicating that the more weight loss, the more TSH declined. After adjusting for covariates in multivariable linear regression, %TWL was found to be independently associated with ΔTSH (ß = 0.180 [95% confidence interval (CI), 0.048 - 0.312], P = 0.008). Moreover, %TWL was divided into 3 categorical groups (%TWL ≤ 25%, 25% < %TWL ≤ 35%, and %TWL > 35%) for further exploration, and was also found to be an independent predictor for ΔTSH after adjusting for covariates in multivariable linear regression (ß = 0.153 [95% CI, 0.019 - 0.287], P = 0.025). Conclusion: TSH, FT4, FT3, TT4, and TT3 decrease significantly 1 year after bariatric surgery. The decline in TSH is independently mediated by postoperative weight loss; the more the weight loss, the more the TSH decrease.


Assuntos
Cirurgia Bariátrica , Obesidade Mórbida , Glândula Tireoide , Hormônios Tireóideos , Humanos , Cirurgia Bariátrica/efeitos adversos , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Glândula Tireoide/fisiologia , Tireotropina , Tiroxina , Tri-Iodotironina , Redução de Peso
20.
Angew Chem Int Ed Engl ; 63(18): e202401758, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38320968

RESUMO

Sonodynamic therapy (SDT) has garnered growing interest owing to its high tissue penetration depth and minimal side effects. However, the lack of efficient sonosensitizers remains the primary limiting factor for the clinical application of this treatment method. Here, defect-repaired graphene phase carbon nitride (g-C3N4) nanosheets are prepared and utilized for enhanced SDT in anti-tumor treatment. After defect engineering optimization, the bulk defects of g-C3N4 are significantly reduced, resulting in higher crystallinity and exhibiting a polyheptazine imide (PHI) structure. Due to the more extended conjugated structure of PHI, facilitating faster charge transfer on the surface, it exhibits superior SDT performance for inducing apoptosis in tumor cells. This work focuses on introducing a novel carbon nitride nanomaterial as a sonosensitizer and a strategy for optimizing sonosensitizer performance by reducing bulk defects.


Assuntos
Neoplasias , Terapia por Ultrassom , Humanos , Nitrilas/química , Neoplasias/tratamento farmacológico , Apoptose , Espécies Reativas de Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...