Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 98(3): 768-783, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33222156

RESUMO

The Peruvian sea represents one of the most productive ocean ecosystems and possesses one of the largest elasmobranch fisheries in the Pacific Ocean. Ecosystem-based management of these fisheries will require information on the trophic ecology of elasmobranchs. This study aimed to understand the diet, trophic interactions and the role of nine commercial elasmobranch species in northern Peru through the analysis of stomach contents. A total of 865 non-empty stomachs were analysed. Off northern Peru, elasmobranchs function as upper-trophic-level species consuming 78 prey items, predominantly teleosts and cephalopods. Two distinctive trophic assemblages were identified: (a) sharks (smooth hammerhead shark Sphyrna zygaena, thresher shark Alopias spp. and blue shark Prionace glauca) that feed mainly on cephalopods in the pelagic ecosystem; and (b) sharks and batoids (Chilean eagle ray Myliobatis chilensis, humpback smooth-hound Mustelus whitneyi, spotted houndshark Triakis maculata, Pacific guitarfish Pseudobatos planiceps, copper shark Carcharhinus brachyurus and school shark Galeorhinus galeus) that feed mainly on teleosts and invertebrates in the benthonic and pelagic coastal ecosystem. This study reveals for the first time the diet of T. maculata and the importance of elasmobranchs as predators of abundant and commercial species (i.e., jumbo squid Dosidicus gigas and Peruvian anchovy Engraulis ringens). The results of this study can assist in the design of an ecosystem-based management for the northern Peruvian sea and the conservation of these highly exploited, threatened or poorly understood group of predators in one of the most productive marine ecosystems.


Assuntos
Dieta , Cadeia Alimentar , Tubarões/fisiologia , Rajidae/fisiologia , Animais , Decapodiformes/fisiologia , Ecossistema , Pesqueiros , Oceano Pacífico , Peru
2.
R Soc Open Sci ; 5(7): 180254, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30109081

RESUMO

Bycatch in net fisheries is recognized as a major source of mortality for many marine species, including seabirds. Few mitigation solutions, however, have been identified. We assessed the effectiveness of illuminating fishing nets with green light emitting diodes (LEDs) to reduce the incidental capture of seabirds. Experiments were conducted in the demersal, set gillnet fishery of Constante, Peru and compared 114 pairs of control and illuminated nets. We observed captures of a total of 45 guanay cormorants (Phalacrocorax bougainvillii), with 39 caught in control nets and six caught in illuminated nets. Seabird bycatch in terms of catch-per-unit-effort was significantly (p < 0.05) higher in control nets than in illuminated nets, representing an 85.1% decline in the cormorant bycatch rate. This study, showing that net illumination reduces seabird bycatch and previous studies showing reductions in sea turtle bycatch without reducing target catch, indicates that net illumination can be an effective multi-taxa bycatch mitigation technique. This finding has broad implications for bycatch mitigation in net fisheries given LED technology's relatively low cost, the global ubiquity of net fisheries and the current paucity of bycatch mitigation solutions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...