Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 29(32): 48736-48747, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35199264

RESUMO

In order to reduce the transmission of pathogens, and COVID-19, WHO and NHS England recommend hand washing (HW) and/or the use of hand sanitizer (HS). The planetary health consequences of these different methods of hand hygiene have not been quantified. A comparative life cycle assessment (LCA) was carried out to compare the environmental impact of the UK population practising increased levels of hand hygiene during the COVID-19 pandemic for 1 year. Washing hands with soap and water was compared to using hand sanitizer (both ethanol and isopropanol based sanitizers were studied). The isopropanol-based HS had the lowest environmental impact in 14 out of the 16 impact categories used in this study. For climate change, hand hygiene using isopropanol HS produced the equivalent of 1060 million kg CO2, compared to 1460 million for ethanol HS, 2300 million for bar soap HW, and 4240 million for liquid soap HW. For both the ethanol and isopropanol HS, the active ingredient was the greatest overall contributing factor to the environmental impact (83.24% and 68.68% respectively). For HW with liquid soap and bar soap, there were additional contributing factors other than the soap itself: for example tap water use (28.12% and 48.68% respectively) and the laundering of a hand towel to dry the hands (10.17% and 17.92% respectively). All forms of hand hygiene have an environmental cost, and this needs to be weighed up against the health benefits of preventing disease transmission. When comparing hand sanitizers to handwashing with soap and water, this study found that using isopropanol based hand sanitizer is better for planetary health. However, no method of hand hygiene was ideal; isopropanol had a greater fossil fuel resource use than ethanol based hand sanitizer. More research is needed to find hand hygiene sources which do not diminish planetary health, and environmental impact is a consideration for public health campaigns around hand hygiene.


Assuntos
COVID-19 , Higiene das Mãos , Higienizadores de Mão , 2-Propanol , COVID-19/prevenção & controle , Etanol , Desinfecção das Mãos/métodos , Humanos , Pandemias , Sabões , Água
2.
Toxicol Sci ; 127(1): 139-49, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22331493

RESUMO

Epithelial ovarian cancer (EOC) is the leading cause of gynecological cancer death in the United States. Cisplatin is a DNA damaging agent initially effective against EOC but limited by resistance. P53 plays a critical role in cellular response to DNA damage and has been implicated in EOC response to platinum chemotherapy. In this study, we examined the role of p53 status in EOC response to a novel combination of cisplatin, sodium arsenite, and hyperthermia. Human EOC cells were treated with cisplatin ± 20µM sodium arsenite at 37°C or 39°C for 1 h. Sodium arsenite ± hyperthermia sensitized wild-type p53-expressing (A2780, A2780/CP70, OVCA 420, OVCA 429, and OVCA 433) EOC cells to cisplatin. Hyperthermia sensitized p53-null SKOV-3 and p53-mutant (OVCA 432 and OVCAR-3) cells to cisplatin. P53 small interfering RNA (siRNA) transfection abrogated sodium arsenite sensitization effect. XPC, a critical DNA damage recognition protein in global genome repair pathway, was induced by cisplatin only in wild-type p53-expressing cells. Cotreatment with sodium arsenite ± hyperthermia attenuated cisplatin-induced XPC in wild-type p53-expressing cells. XPC siRNA transfection sensitized wild-type p53-expressing cells to cisplatin, suggesting that sodium arsenite ± hyperthermia attenuation of XPC is a mechanism by which wild-type p53-expressing cells are sensitized to cisplatin. Hyperthermia ± sodium arsenite enhanced cellular and DNA accumulation of platinum in wild-type p53-expressing cells. Only hyperthermia enhanced platinum accumulation in p53-null cells. In conclusion, sodium arsenite ± hyperthermia sensitizes wild-type p53-expressing EOC cells to cisplatin by suppressing DNA repair protein XPC and increasing cellular and DNA platinum accumulation.


Assuntos
Antineoplásicos/farmacologia , Arsenitos/farmacologia , Cisplatino/farmacologia , Dano ao DNA/efeitos dos fármacos , Hipertermia Induzida , Neoplasias Ovarianas/tratamento farmacológico , Compostos de Sódio/farmacologia , Proteína Supressora de Tumor p53/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Quimioterapia Combinada , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/genética , Transfecção/métodos , Proteína Supressora de Tumor p53/genética
3.
Toxicol Appl Pharmacol ; 229(2): 252-61, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18328521

RESUMO

Arsenic induces clinical remission in patients with acute promyelocytic leukemia and has potential for treatment of other cancers. The current study examines factors influencing sensitivity to arsenic using human malignant melanoma cell lines. A375 and SK-Mel-2 cells were sensitive to clinically achievable concentrations of arsenite, whereas SK-Mel-3 and SK-Mel-28 cells required supratherapeutic levels for toxicity. Inhibition of glutathione synthesis, glutathione S-transferase (GST) activity, and multidrug resistance protein (MRP) transporter function attenuated arsenite resistance, consistent with studies suggesting that arsenite is extruded from the cell as a glutathione conjugate by MRP-1. However, MRP-1 was not overexpressed in resistant lines and GST-pi was only slightly elevated. ICP-MS analysis indicated that arsenite-resistant SK-Mel-28 cells did not accumulate less arsenic than arsenite-sensitive A375 cells, suggesting that resistance was not attributable to reduced arsenic accumulation but rather to intrinsic properties of resistant cell lines. The mode of arsenite-induced cell death was apoptosis. Arsenite-induced apoptosis is associated with cell cycle alterations. Cell cycle analysis revealed arsenite-sensitive cells arrested in mitosis whereas arsenite-resistant cells did not, suggesting that induction of mitotic arrest occurs at lower intracellular arsenic concentrations. Higher intracellular arsenic levels induced cell cycle arrest in the S-phase and G(2)-phase in SK-Mel-3 and SK-Mel-28 cells, respectively. The lack of arsenite-induced mitotic arrest in resistant cell lines was associated with a weakened spindle checkpoint resulting from reduced expression of spindle checkpoint protein BUBR1. These data suggest that arsenite has potential for treatment of solid tumors but a functional spindle checkpoint is a prerequisite for a positive response to its clinical application.


Assuntos
Arsenitos/toxicidade , Melanoma/patologia , Mitose/efeitos dos fármacos , Compostos de Sódio/toxicidade , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos
4.
J Org Chem ; 73(9): 3616-8, 2008 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-18363368

RESUMO

The coupling reaction of water-soluble alkyl nitriles using Fenton's reagent (Fe(II) and H2O2) is described. The best metal for the reaction is iron(II), and the greatest yields are obtained when the concentration of the metal is kept low. Hydrogen-atom abstraction is selective, preferentially producing the radical alpha to the nitrile. In order to increase the production of dinitrile, in situ reduction of iron(III) to iron(II), using a variety of reducing agents, was investigated.

5.
J Chromatogr A ; 1024(1-2): 129-37, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753715

RESUMO

High-performance chelation ion chromatography (HPCIC) was employed to retain cationic Cr(III) on an anion-exchange column and hence allow the separation of the two most prevalent forms of chromium, Cr(II) and Cr(VI). A mobile phase of nitric acid was utilized at pH = 1.5; additionally, 2,6-pyridinedicarboxylic acid was used at a concentration of 6 mM. Additives with different structural characteristics were used in an effort to elucidate retention mechanisms. Inductively-coupled plasma mass spectrometry was used for chromium detection. A collision cell was utilized to reduce chloride-based polyatomic ions that may interfere with the detection of Cr(III), and a detection limit study yielded levels in the low part-per-billion range. The newly developed method was applied to the chromatographic analysis of samples of an incubation medium containing Cr(VI) incubated with cell nuclei.


Assuntos
Quelantes/química , Cromatografia Líquida de Alta Pressão/métodos , Cromo/análise , Espectrometria de Massas/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...