Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Rep ; 3(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26197932

RESUMO

The aim of this study was to evaluate the effect of overload-induced hypertrophy on extensor digitorum longus (EDL) and soleus muscles of streptozotocin-induced diabetic rats. The overload-induced hypertrophy and absolute tetanic and twitch forces increases in EDL and soleus muscles were not different between diabetic and control rats. Phospho-Akt and rpS6 contents were increased in EDL muscle after 7 days of overload and returned to the pre-overload values after 30 days. In the soleus muscle, the contents of total and phospho-Akt and total rpS6 were increased in both groups after 7 days. The contents of total Akt in controls and total rpS6 and phospho-Akt in the diabetic rats remained increased after 30 days. mRNA expression after 7 days of overload in the EDL muscle of control and diabetic animals showed an increase in MGF and follistatin and a decrease in myostatin and Axin2. The expression of FAK was increased and of MuRF-1 and atrogin-1 decreased only in the control group, whereas Ankrd2 expression was enhanced only in diabetic rats. In the soleus muscle caused similar changes in both groups: increase in FAK and MGF and decrease in Wnt7a, MuRF-1, atrogin-1, and myostatin. Differences between groups were observed only in the increased expression of follistatin in diabetic animals and decreased Ankrd2 expression in the control group. So, insulin deficiency does not impair the overload-induced hypertrophic response in soleus and EDL muscles. However, different mechanisms seem to be involved in the comparable hypertrophic responses of skeletal muscle in control and diabetic animals.

2.
Eur J Appl Physiol ; 112(11): 3905-11, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22415102

RESUMO

The effect of short-term creatine (Cr) supplementation upon content of skeletal muscle-derived-reactive oxygen species (ROS) was investigated. Wistar rats were supplemented with Cr (5 g/kg BW) or vehicle, by gavage, for 6 days. Soleus and extensor digitorum longus (EDL) muscles were removed and incubated for evaluation of ROS content using Amplex-UltraRed reagent. The analysis of expression and activity of antioxidant enzymes (superoxide dismutase 1 and 2, catalase and glutathione peroxidase) were performed. Direct scavenger action of Cr on superoxide radical and hydrogen peroxide was also investigated. Short-term Cr supplementation attenuated ROS content in both soleus and EDL muscles (by 41 and 33.7%, respectively). Cr supplementation did not change expression and activity of antioxidant enzymes. Basal TBARS content was not altered by Cr supplementation. In cell-free experiments, Cr showed a scavenger effect on superoxide radical in concentrations of 20 and 40 mM, but not on hydrogen peroxide. These results indicate that Cr supplementation decreases ROS content in skeletal muscle possibly due to a direct action of Cr molecule on superoxide radical.


Assuntos
Antioxidantes/metabolismo , Creatina/administração & dosagem , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Animais , Creatina/farmacologia , Masculino , Ratos , Ratos Wistar , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1
3.
Front Biosci (Landmark Ed) ; 16(1): 315-39, 2011 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-21196173

RESUMO

Aberrant alterations in glucose and lipid concentrations and their pathways of metabolism are a hallmark of diabetes. However, much less is known about alterations in concentrations of amino acids and their pathways of metabolism in diabetes. In this review we have attempted to highlight, integrate and discuss common alterations in amino acid metabolism in a wide variety of cells and tissues and relate these changes to alterations in endocrine, physiologic and immune function in diabetes.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Células Secretoras de Insulina/metabolismo , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Diabetes Mellitus Tipo 2/imunologia , Diabetes Mellitus Tipo 2/fisiopatologia , Endotélio Vascular/fisiopatologia , Células Secretoras de Glucagon/efeitos dos fármacos , Células Secretoras de Glucagon/metabolismo , Glucose/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina , Células Secretoras de Insulina/efeitos dos fármacos , Fígado/fisiopatologia , Linfócitos/efeitos dos fármacos , Linfócitos/imunologia , Músculo Esquelético/fisiopatologia , Neutrófilos/efeitos dos fármacos , Neutrófilos/imunologia
4.
J Cell Physiol ; 217(1): 1-12, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18543263

RESUMO

In this review we updated the fatty acid (FA) effects on skeletal muscle metabolism. Abnormal FA availability induces insulin resistance and accounts for several of its symptoms and complications. Efforts to understand the pathogenesis of insulin resistance are focused on disordered lipid metabolism and consequently its effect on insulin signaling pathway. We reviewed herein the FA effects on metabolism, signaling, regulation of gene expression and oxidative stress in insulin resistance. The elevated IMTG content has been associated with increased intracellular content of diacylglycerol (DAG), ceramides and long-chain acyl-coenzyme A (LCA-CoA). This condition has been shown to promote insulin resistance by interfering with phosphorylation of proteins of the insulin pathway including insulin receptor substrate-1/2 (IRS), phosphatidylinositol-3-kinase, (PI3-kinase) and protein kinase C. Although the molecular mechanism is not completely understood, elevated reactive oxygen (ROS) and nitrogen species (RNS) are involved in this process. Elevated ROS/RNS activates nuclear factor-kappaB (NFkB), which promotes the transcription of proinflammatory tumoral necrosis factor alpha (TNFalpha), decreasing the insulin response. Therefore, oxidative stress induced by elevated FA availability may constitute one of the major causes of insulin resistance in skeletal muscle.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Estresse Oxidativo/fisiologia , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...