Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharmaceuticals (Basel) ; 17(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38931408

RESUMO

This work examines the current landscape of drug discovery and development, with a particular focus on the chemical and pharmacological spaces. It emphasizes the importance of understanding these spaces to anticipate future trends in drug discovery. The use of cheminformatics and data analysis enabled in silico exploration of these spaces, allowing a perspective of drugs, approved drugs after 2020, and clinical candidates, which were extracted from the newly released ChEMBL34 (March 2024). This perspective on chemical and pharmacological spaces enables the identification of trends and areas to be occupied, thereby creating opportunities for more effective and targeted drug discovery and development strategies in the future.

2.
Pharmaceuticals (Basel) ; 16(8)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37631072

RESUMO

One of the key scientific aspects of small-molecule drug discovery and development is the analysis of the relationship between its chemical structure and biological activity. Understanding the effects that lead to significant changes in biological activity is of paramount importance for the rational design and optimization of bioactive molecules. The "methylation effect", or the "magic methyl" effect, is a factor that stands out due to the number of examples that demonstrate profound changes in either pharmacodynamic or pharmacokinetic properties. In many cases, this has been carried out rationally, but in others it has been the product of serendipitous observations. This paper summarizes recent examples that provide an overview of the current state of the art and contribute to a better understanding of the methylation effect in bioactive small-molecule drug candidates.

3.
ACS Omega ; 7(43): 38752-38765, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36340078

RESUMO

Sulfonylhydrazones are privileged structures with multifaceted pharmacological activity. Exploring the hypoglycemic properties of these organic compounds, we previously revealed a new series of N-sulfonylhydrazones (NSH) as antidiabetic drug candidates. Here, we evaluated the microsomal metabolism, chemical stability, and permeability profile of these NSH prototypes, focusing on the pharmacokinetic differences in N-methylated and non-N-methylated analogs. Our results demonstrated that the N-methylated analogs (LASSBio-1772 and LASSBio-1774) were metabolized by CYP, forming three and one metabolites, respectively. These prototypes exhibited chemical stability at pH 2.0 and 7.4 and brain penetration ability. On the other hand, non-N-methylated analogs (LASSBio-1771 and LASSBio-1773) were hydrolyzed in acid pH and could not cross the artificial blood-brain barrier. The cyano group in LASSBio-1771 was postulated as a possible site of interaction with the heme group, potentially inhibiting CYP enzymes. Moreover, prototypes with the methyl ester group were metabolized by carboxylesterase, and non-N-methylated analogs did not show oxidative metabolism. The prototypes (except LASSBio-1774) showed excellent gastrointestinal absorption. Altogether, our data support the idea that the methyl effect on NSH strongly alters their pharmacokinetic profile, enhances the recognition by CYP enzymes, promotes brain penetration, and plays a protective effect upon acid hydrolysis.

4.
Bioorg Med Chem Lett ; 28(17): 2797-2806, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006065

RESUMO

Over the last two decades, N-acylhydrazone (NAH) has been proven to be a very versatile and promising motif in drug design and medicinal chemistry. Herein, we discuss the current and future challenges in the emergence of bioactive NAH-based scaffolds and to developing strategies to overcome the failures in drug discovery. The NAH-related approved drugs nitrofurazone, nitrofurantoin, carbazochrome, testosterone 17-enanthate 3-benzilic acid hydrazine, nifuroxazide, dantrolene, and azumolene are already used as therapeutics in various countries. PAC-1 is an NAH-based therapeutic agent that entered clinical trials in 2015. Another NAH-derived scaffold, LASSBio-294, is in preclinical trials. This review highlights the detailed comprehensive assessment and therapeutic landscape of bioactive NAH motif scaffolds in preclinical and clinical studies published to date and their promise and associated challenges in current and future drug discovery of NAH-based drugs that will progress to clinical use.


Assuntos
Antineoplásicos/uso terapêutico , Hidrazonas/uso terapêutico , Neoplasias/tratamento farmacológico , Antineoplásicos/química , Descoberta de Drogas , Humanos , Hidrazonas/química , Estrutura Molecular
5.
Angew Chem Int Ed Engl ; 57(31): 9970-9975, 2018 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-29873877

RESUMO

PIK-75 is a phosphoinositide-3-kinase (PI3K) α-isoform-selective inhibitor with high potency. Although published structure-activity relationship data show the importance of the NO2 and the Br substituents in PIK-75, none of the published studies could correctly determine the underlying reason for their importance. In this publication, we report the first X-ray crystal structure of PIK-75 in complex with the kinase GSK-3ß. The structure shows an unusual U-shaped conformation of PIK-75 within the active site of GSK-3ß that is likely stabilized by an atypical intramolecular Br⋅⋅⋅NO2 halogen bond. NMR and MD simulations show that this conformation presumably also exists in solution and leads to a binding-competent preorganization of the PIK-75 molecule, thus explaining its high potency. We therefore suggest that the site-specific incorporation of halogen bonds could be generally used to design conformationally restricted bioactive substances with increased potencies.

6.
Chem Biol Drug Des ; 91(3): 668-680, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29068547

RESUMO

G-protein-coupled receptor 40 (GPR40) was recently identified as an interesting target for treatment of type 2 diabetes. The high level of expression in pancreatic beta cells and the dependence of glucose on stimulating the secretion of insulin led to great excitement in this field. The identification of this target was followed by the development of a series of agonists with great potential for the treatment of diabetes. All known agonists have the presence of a pharmacophoric carboxylic acid group in their structure, which makes several polar interactions at the binding site of this receptor. In this report, we provide a review of the structure-activity relationships of GPR40 agonists with a focus on the main strategies of medicinal chemistry used to develop each one of the main structural patterns exploited for this purpose. Additionally, we provide a general model for the design of GPR40 ligands that can help researchers to follow up some strategies and implement them in the development of novel agonists of this receptor.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Insulina , Modelos Moleculares , Receptores Acoplados a Proteínas G , Animais , Glicemia/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patologia , Humanos , Resistência à Insulina , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/patologia , Ligantes , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...