Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 4663, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945211

RESUMO

Kiss1 neurons, producing kisspeptins, are essential for puberty and fertility, but their molecular regulatory mechanisms remain unfolded. Here, we report that congenital ablation of the microRNA-synthesizing enzyme, Dicer, in Kiss1 cells, causes late-onset hypogonadotropic hypogonadism in both sexes, but is compatible with pubertal initiation and preserved Kiss1 neuronal populations at the infantile/juvenile period. Yet, failure to complete puberty and attain fertility is observed only in females. Kiss1-specific ablation of Dicer evokes disparate changes of Kiss1-cell numbers and Kiss1/kisspeptin expression between hypothalamic subpopulations during the pubertal-transition, with a predominant decline in arcuate-nucleus Kiss1 levels, linked to enhanced expression of its repressors, Mkrn3, Cbx7 and Eap1. Our data unveil that miRNA-biosynthesis in Kiss1 neurons is essential for pubertal completion and fertility, especially in females, but dispensable for initial reproductive maturation and neuronal survival in both sexes. Our results disclose a predominant miRNA-mediated inhibitory program of repressive signals that is key for precise regulation of Kiss1 expression and, thereby, reproductive function.


Assuntos
RNA Helicases DEAD-box/metabolismo , Kisspeptinas , Ribonuclease III/metabolismo , Animais , Feminino , Fertilidade , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Neurônios/metabolismo , Ribonuclease III/genética , Maturidade Sexual/genética
2.
Metabolism ; 129: 155141, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35074314

RESUMO

BACKGROUND: Perturbations in the timing of puberty, with potential adverse consequences in later health, are increasingly common. The underlying neurohormonal mechanisms are unfolded, but nutritional alterations are key contributors. Efforts to unveil the basis of normal puberty and its metabolic control have focused on mechanisms controlling expression of Kiss1, the gene encoding the puberty-activating neuropeptide, kisspeptin. However, other regulatory phenomena remain ill-defined. Here, we address the putative role of the G protein-coupled-receptor kinase-2, GRK2, in GnRH neurons, as modulator of pubertal timing via repression of the actions of kisspeptin, in normal maturation and conditions of nutritional deficiency. METHODS: Hypothalamic RNA and protein expression analyses were conducted in maturing female rats. Pharmacological studies involved central administration of GRK2 inhibitor, ßARK1-I, and assessment of gonadotropin responses to kisspeptin or phenotypic and hormonal markers of puberty, under normal nutrition or early subnutrition in female rats. In addition, a mouse line with selective ablation of GRK2 in GnRH neurons, aka G-GRKO, was generated, in which hormonal responses to kisspeptin and puberty onset were monitored, in normal conditions and after nutritional deprivation. RESULTS: Hypothalamic GRK2 expression increased along postnatal maturation in female rats, especially in the preoptic area, where most GnRH neurons reside, but decreased during the juvenile-to-pubertal transition. Blockade of GRK2 activity enhanced Ca+2 responses to kisspeptin in vitro, while central inhibition of GRK2 in vivo augmented gonadotropin responses to kisspeptin and advanced puberty onset. Postnatal undernutrition increased hypothalamic GRK2 expression and delayed puberty onset, the latter being partially reversed by central GRK2 inhibition. Conditional ablation of GRK2 in GnRH neurons enhanced gonadotropin responses to kisspeptin, accelerated puberty onset, and increased LH pulse frequency, while partially prevented the negative impact of subnutrition on pubertal timing and LH pulsatility in mice. CONCLUSIONS: Our data disclose a novel pathway whereby GRK2 negatively regulates kisspeptin actions in GnRH neurons, as major regulatory mechanism for tuning pubertal timing in nutritionally-compromised conditions.


Assuntos
Kisspeptinas , Desnutrição , Animais , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/genética , Desnutrição/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Receptores de Kisspeptina-1/metabolismo , Maturidade Sexual/fisiologia
3.
Cell Metab ; 32(6): 951-966.e8, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33080217

RESUMO

Childhood obesity, especially in girls, is frequently bound to earlier puberty, which is linked to higher disease burden later in life. The mechanisms underlying this association remain elusive. Here we show that brain ceramides participate in the control of female puberty and contribute to its alteration in early-onset obesity in rats. Postnatal overweight caused earlier puberty and increased hypothalamic ceramide content, while pharmacological activation of ceramide synthesis mimicked the pubertal advancement caused by obesity, specifically in females. Conversely, central blockade of de novo ceramide synthesis delayed puberty and prevented the effects of the puberty-activating signal, kisspeptin. This phenomenon seemingly involves a circuit encompassing the paraventricular nucleus (PVN) and ovarian sympathetic innervation. Early-onset obesity enhanced PVN expression of SPTLC1, a key enzyme for ceramide synthesis, and advanced the maturation of the ovarian noradrenergic system. In turn, obesity-induced pubertal precocity was reversed by virogenetic suppression of SPTLC1 in the PVN. Our data unveil a pathway, linking kisspeptin, PVN ceramides, and sympathetic ovarian innervation, as key for obesity-induced pubertal precocity.


Assuntos
Ceramidas/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Ovário/metabolismo , Obesidade Infantil , Puberdade Precoce , Animais , Feminino , Masculino , Obesidade Infantil/complicações , Obesidade Infantil/metabolismo , Puberdade Precoce/etiologia , Puberdade Precoce/metabolismo , Ratos Wistar
4.
Cells ; 9(9)2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839401

RESUMO

GH (growth hormone) secretion/action is modulated by alterations in energy homeostasis, such as malnutrition and obesity. Recent data have uncovered the mechanism by which hypothalamic neurons sense nutrient bioavailability, with a relevant contribution of AMPK (AMP-activated protein kinase) and mTOR (mammalian Target of Rapamycin), as sensors of cellular energy status. However, whether central AMPK-mediated lipid signaling and mTOR participate in the regulation of pituitary GH secretion remains unexplored. We provide herein evidence for the involvement of hypothalamic AMPK signaling, but not hypothalamic lipid metabolism or CPT-1 (carnitine palmitoyltransferase I) activity, in the regulation of GH stimulatory responses to the two major elicitors of GH release in vivo, namely GHRH (growth hormone-releasing hormone) and ghrelin. This effect appeared to be GH-specific, as blocking of hypothalamic AMPK failed to influence GnRH (gonadotropin-releasing hormone)-induced LH (luteinizing hormone) secretion. Additionally, central mTOR inactivation did not alter GH responses to GHRH or ghrelin, nor this blockade affected LH responses to GnRH in vivo. In sum, we document here for the first time the indispensable and specific role of preserved central AMPK, but not mTOR, signaling, through a non-canonical lipid signaling pathway, for proper GH responses to GHRH and ghrelin in vivo.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Grelina/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Animais , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Transdução de Sinais
5.
PLoS Biol ; 17(11): e3000532, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31697675

RESUMO

Mkrn3, the maternally imprinted gene encoding the makorin RING-finger protein-3, has recently emerged as putative pubertal repressor, as evidenced by central precocity caused by MKRN3 mutations in humans; yet, the molecular underpinnings of this key regulatory action remain largely unexplored. We report herein that the microRNA, miR-30, with three binding sites in a highly conserved region of its 3' UTR, operates as repressor of Mkrn3 to control pubertal onset. Hypothalamic miR-30b expression increased, while Mkrn3 mRNA and protein content decreased, during rat postnatal maturation. Neonatal estrogen exposure, causing pubertal alterations, enhanced hypothalamic Mkrn3 and suppressed miR-30b expression in female rats. Functional in vitro analyses demonstrated a strong repressive action of miR-30b on Mkrn3 3' UTR. Moreover, central infusion during the juvenile period of target site blockers, tailored to prevent miR-30 binding to Mkrn3 3' UTR, reversed the prepubertal down-regulation of hypothalamic Mkrn3 protein and delayed female puberty. Collectively, our data unveil a novel hypothalamic miRNA pathway, involving miR-30, with a prominent role in the control of puberty via Mkrn3 repression. These findings expand our current understanding of the molecular basis of puberty and its disease states.


Assuntos
Hipotálamo/metabolismo , MicroRNAs/fisiologia , Maturidade Sexual/genética , Ubiquitina-Proteína Ligases/genética , Animais , Sítios de Ligação , Linhagem Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , MicroRNAs/metabolismo , Ratos , Análise de Sequência de DNA
6.
Metabolism ; 98: 84-94, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31226351

RESUMO

BACKGROUND: Kisspeptins, encoded by Kiss1, have emerged as essential regulators of puberty and reproduction by primarily acting on GnRH neurons, via their canonical receptor, Gpr54. Mounting, as yet fragmentary, evidence strongly suggests that kisspeptin signaling may also participate in the control of key aspects of body energy and metabolic homeostasis. However, characterization of such metabolic dimension of kisspeptins remains uncomplete, without an unambiguous discrimination between the primary metabolic actions of kisspeptins vs. those derived from their ability to stimulate the secretion of gonadal hormones, which have distinct metabolic actions on their own. In this work, we aimed to tease apart primary vs. secondary effects of kisspeptins in the control of key aspects of metabolic homeostasis using genetic models of impaired kisspeptin signaling and/or gonadal hormone status. METHODS: Body weight (BW) gain and composition, food intake and key metabolic parameters, including glucose tolerance, were comparatively analyzed, in lean and obesogenic conditions, in mice lacking kisspeptin signaling due to global inactivation of Gpr54 (displaying profound hypogonadism; Gpr54-/-) vs. Gpr54 null mice with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54-/-Tg), where kisspeptin signaling elsewhere than in GnRH neurons is ablated but gonadal function is preserved. RESULTS: In male mice, global elimination of kisspeptin signaling resulted in decreased BW, feeding suppression and increased adiposity, without overt changes in glucose tolerance, whereas Gpr54-/- female mice displayed enhanced BW gain at adulthood, increased adiposity and perturbed glucose tolerance, despite reduced food intake. Gpr54-/-Tg rescued mice showed altered postnatal BW gain in males and mildly perturbed glucose tolerance in females, with intermediate phenotypes between control and global KO animals. Yet, body composition and leptin levels were similar to controls in gonadal-rescued mice. Exposure to obesogenic insults, such as high fat diet (HFD), resulted in exaggerated BW gain and adiposity in global Gpr54-/- mice of both sexes, and worsening of glucose tolerance, especially in females. Yet, while rescued Gpr54-/-Tg males displayed intermediate BW gain and feeding profiles and impaired glucose tolerance, rescued Gpr54-/-Tg females behaved as controls, except for a modest deterioration of glucose tolerance after ovariectomy. CONCLUSION: Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Kisspeptins, master regulators of reproduction, may also participate in the control of key aspects of body energy and metabolic homeostasis; yet, the nature of such metabolic actions remains debatable, due in part to the fact that kisspeptins modulate gonadal hormones, which have metabolic actions on their own. By comparing the metabolic profiles of two mouse models with genetic inactivation of kisspeptin signaling but different gonadal status (hypogonadal vs. preserved gonadal function), we provide herein a systematic dissection of gonadal-dependent vs. -independent metabolic actions of kisspeptins. Our data support a global role of kisspeptin signaling in the control of body weight and metabolic homeostasis, with a dominant contribution of gonadal hormone-dependent actions. However, our results document also discernible primary effects of kisspeptin signaling in the regulation of body weight gain, feeding and responses to obesogenic insults, which occur in a sexually-dimorphic manner. These data pave the way for future analyses addressing the eventual contribution of altered kisspeptin signaling in the development of metabolic alterations, especially in conditions linked to reproductive dysfunction.


Assuntos
Peso Corporal/fisiologia , Hormônios Gonadais/fisiologia , Homeostase/fisiologia , Kisspeptinas/fisiologia , Transdução de Sinais/fisiologia , Animais , Dieta , Ingestão de Alimentos , Feminino , Intolerância à Glucose/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/genética , Ovariectomia , Receptores de Kisspeptina-1/genética , Receptores de Kisspeptina-1/metabolismo , Aumento de Peso/genética
7.
Proc Natl Acad Sci U S A ; 115(45): E10758-E10767, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30348767

RESUMO

Conditions of metabolic distress, from malnutrition to obesity, impact, via as yet ill-defined mechanisms, the timing of puberty, whose alterations can hamper later cardiometabolic health and even life expectancy. AMP-activated protein kinase (AMPK), the master cellular energy sensor activated in conditions of energy insufficiency, has a major central role in whole-body energy homeostasis. However, whether brain AMPK metabolically modulates puberty onset remains unknown. We report here that central AMPK interplays with the puberty-activating gene, Kiss1, to control puberty onset. Pubertal subnutrition, which delayed puberty, enhanced hypothalamic pAMPK levels, while activation of brain AMPK in immature female rats substantially deferred puberty. Virogenetic overexpression of a constitutively active form of AMPK, selectively in the hypothalamic arcuate nucleus (ARC), which holds a key population of Kiss1 neurons, partially delayed puberty onset and reduced luteinizing hormone levels. ARC Kiss1 neurons were found to express pAMPK, and activation of AMPK reduced ARC Kiss1 expression. The physiological relevance of this pathway was attested by conditional ablation of the AMPKα1 subunit in Kiss1 cells, which largely prevented the delay in puberty onset caused by chronic subnutrition. Our data demonstrate that hypothalamic AMPK signaling plays a key role in the metabolic control of puberty, acting via a repressive modulation of ARC Kiss1 neurons in conditions of negative energy balance.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Desnutrição/metabolismo , Neurônios/metabolismo , Maturidade Sexual/genética , Proteínas Quinases Ativadas por AMP/genética , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Animais Geneticamente Modificados , Núcleo Arqueado do Hipotálamo/citologia , Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Restrição Calórica/efeitos adversos , Estradiol/farmacologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Kisspeptinas/genética , Hormônio Luteinizante/sangue , Desnutrição/genética , Desnutrição/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Ratos , Ratos Wistar , Ribonucleotídeos/farmacologia , Transdução de Sinais , Fatores de Tempo
8.
Metabolism ; 87: 87-97, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30075164

RESUMO

BACKGROUND: RF-amide-related peptide-3 (RFRP-3), the mammalian ortholog of gonadotropin-inhibiting hormone, operates as inhibitory signal for the reproductive axis. Recently, RFRP-3 has been also suggested to stimulate feeding, and therefore might contribute to the control of body weight and its alterations. Yet, characterization of the metabolic actions of RFRP-3 has been so far superficial and mostly pharmacological. Here, we aim to investigate the physiological roles of RFRP-3 signaling in the control of feeding and metabolic homeostasis using a novel mouse model of genetic ablation of its canonical receptor, NPFF1R. METHODS: Food intake, body weight gain and composition, and key metabolic parameters, including glucose tolerance and insulin sensitivity, were monitored in mice with constitutive inactivation of NPFF1R. RESULTS: Congenital elimination of NPFF1R in male mice resulted in changes in feeding patterns, with a decrease in spontaneous food intake and altered responses to leptin and ghrelin: leptin-induced feeding suppression was exaggerated in NPFF1R null mice, whereas orexigenic responses to ghrelin were partially blunted. Concordant with this pro-anorectic phenotype, hypothalamic expression of Pomc was increased in NPFF1R null mice. In contrast, spontaneous feeding and neuropeptide expression remained unaltered in NPFF1R KO female mice. Despite propensity for reduced feeding, ablation of NPFF1R signaling in male mice did not cause overt alterations in body weight (BW) gain or composition, neither it affected BW responses to high fat diet (HFD), total energy expenditure or RQ ratios. Yet, NPFF1R KO males showed a decrease in locomotor activity. Conversely, NPFF1R null female mice tended to be heavier and displayed exaggerated BW increases in response to obesogenic insults, such as HFD or ovariectomy. These were associated to increased fat mass, decreased total energy expenditure in HFD, and unaltered RQ ratios or spontaneous locomotor activity. Finally, lack of NPFF1R signaling worsened the metabolic impact of HFD on glycemic homeostasis in males, as revealed by impaired glucose tolerance and insulin sensitivity, while female mice remained unaffected. CONCLUSION: Our data support a discernible orexigenic role of NPFF1R signaling selectively in males, which might modulate the effects of leptin and ghrelin on food intake. In addition, our study is the first to disclose the sex-biased, deleterious impact of the lack of NPFF1R signaling on body weight and fat composition, energy expenditure, locomotor activity and glucose balance, which exaggerates some of the metabolic consequences of concurrent obesogenic insults, such as HFD, in a sexually dimorphic manner. SUMMARY OF TRANSLATIONAL RELEVANCE: Our data are the first to document the nature and magnitude of the regulatory actions of RFRP-3/NPFF1R signaling in the control of feeding and metabolic homeostasis in a physiological setting. Our results not only suggest an orexigenic action of endogenous RFRP-3, specifically in males, but reveal also the detrimental impact of ablation of NPFF1R signaling on body composition, energy expenditure, locomotor activity or glucose balance, especially when concurrent with other obesogenic insults, as HFD, thereby providing the first evidence for additional metabolic effects of RFRP-3, other that the mere control of feeding. Interestingly, alterations of such key metabolic parameters occurred in a sex-biased manner, with males being more sensitive to deregulation of locomotor activity and glycemic control, while females displayed clearer obesogenic responses and deregulated energy expenditure. While our study cannot discard the possibility of RFRP-3 actions via alternative pathways, such as NPFF2R, our data pave the way for future analyses addressing the eventual contribution of altered RFRP-3/NPFF1R signaling in the development of metabolic alterations (including obesity and its comorbidities), especially in conditions associated to reproductive dysfunction.


Assuntos
Ingestão de Alimentos/genética , Ingestão de Alimentos/fisiologia , Neuropeptídeos/metabolismo , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/fisiologia , Animais , Composição Corporal/genética , Dieta Hiperlipídica , Metabolismo Energético/genética , Grelina/farmacologia , Intolerância à Glucose/genética , Homeostase , Hipotálamo/metabolismo , Resistência à Insulina/genética , Leptina/farmacologia , Masculino , Camundongos , Camundongos Knockout , Caracteres Sexuais , Aumento de Peso/genética
9.
Endocrinology ; 159(2): 1005-1018, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29309558

RESUMO

Obesity and its comorbidities are reaching epidemic proportions worldwide. Maternal obesity is known to predispose the offspring to metabolic disorders, independently of genetic inheritance. This intergenerational transmission has also been suggested for paternal obesity, with a potential negative impact on the metabolic and, eventually, reproductive health of the offspring, likely via epigenetic changes in spermatozoa. However, the neuroendocrine component of such phenomenon and whether paternal obesity sensitizes the offspring to the disturbances induced by high-fat diet (HFD) remain poorly defined. We report in this work the metabolic and reproductive impact of HFD in the offspring from obese fathers, with attention to potential sex differences and alterations of hypothalamic Kiss1 system. Lean and obese male rats were mated with lean virgin female rats; male and female offspring were fed HFD from weaning onward and analyzed at adulthood. The increases in body weight and leptin levels, but not glucose intolerance, induced by HFD were significantly augmented in the male, but not female, offspring from obese fathers. Paternal obesity caused a decrease in luteinizing hormone (LH) levels and exacerbated the drop in circulating testosterone and gene expression of its key biosynthetic enzymes caused by HFD in the male offspring. LH responses to central kisspeptin-10 administration were also suppressed in HFD males from obese fathers. In contrast, paternal obesity did not significantly alter gonadotropin levels in the female offspring fed HFD, although these females displayed reduced LH responses to kisspeptin-10. Our findings suggest that HFD-induced metabolic and reproductive disturbances are exacerbated by paternal obesity preferentially in males, whereas kisspeptin effects are affected in both sexes.


Assuntos
Pai , Kisspeptinas/fisiologia , Obesidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Reprodução/fisiologia , Animais , Feminino , Masculino , Obesidade/complicações , Gravidez , Ratos , Ratos Wistar , Saúde Reprodutiva , Caracteres Sexuais , Transdução de Sinais/fisiologia
10.
Mol Metab ; 5(10): 844-857, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27688998

RESUMO

OBJECTIVE: Puberty is a key developmental phenomenon highly sensitive to metabolic modulation. Worrying trends of changes in the timing of puberty have been reported in humans. These might be linked to the escalating prevalence of childhood obesity and could have deleterious impacts on later (cardio-metabolic) health, but their underlying mechanisms remain unsolved. The neuropeptide α-MSH, made by POMC neurons, plays a key role in energy homeostasis by mediating the actions of leptin and likely participates in the control of reproduction. However, its role in the metabolic regulation of puberty and interplay with kisspeptin, an essential puberty-regulating neuropeptide encoded by Kiss1, remain largely unknown. We aim here to unveil the potential contribution of central α-MSH signaling in the metabolic control of puberty by addressing its role in mediating the pubertal effects of leptin and its potential interaction with kisspeptin. METHODS: Using wild type and genetically modified rodent models, we implemented pharmacological studies, expression analyses, electrophysiological recordings, and virogenetic approaches involving DREADD technology to selectively inhibit Kiss1 neurons, in order to interrogate the physiological role of a putative leptin→α-MSH→kisspeptin pathway in the metabolic control of puberty. RESULTS: Stimulation of central α-MSH signaling robustly activated the reproductive axis in pubertal rats, whereas chronic inhibition of melanocortin receptors MC3/4R, delayed puberty, and prevented the permissive effect of leptin on puberty onset. Central blockade of MC3/4R or genetic elimination of kisspeptin receptors from POMC neurons did not affect kisspeptin effects. Conversely, congenital ablation of kisspeptin receptors or inducible, DREADD-mediated inhibition of arcuate nucleus (ARC) Kiss1 neurons resulted in markedly attenuated gonadotropic responses to MC3/4R activation. Furthermore, close appositions were observed between POMC fibers and ARC Kiss1 neurons while blockade of α-MSH signaling suppressed Kiss1 expression in the ARC of pubertal rats. CONCLUSIONS: Our physiological, virogenetic, and functional genomic studies document a novel α-MSH→kisspeptin→GnRH neuronal signaling pathway involved in transmitting the permissive effects of leptin on pubertal maturation, which is relevant for the metabolic (and, eventually, pharmacological) regulation of puberty onset.

11.
Sci Rep ; 6: 19206, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26755241

RESUMO

Kisspeptins, ligands of the receptor, Gpr54, are potent stimulators of puberty and fertility. Yet, whether direct kisspeptin actions on GnRH neurons are sufficient for the whole repertoire of their reproductive effects remains debatable. To dissect out direct vs. indirect effects of kisspeptins on GnRH neurons in vivo, we report herein the detailed reproductive/gonadotropic characterization of a Gpr54 null mouse line with selective re-introduction of Gpr54 expression only in GnRH cells (Gpr54(-/-)Tg; rescued). Despite preserved fertility, adult rescued mice displayed abnormalities in gonadal microstructure, with signs of precocious ageing in females and elevated LH levels with normal-to-low testosterone secretion in males. Gpr54(-/-)Tg rescued mice showed also altered gonadotropin responses to negative feedback withdrawal, while luteinizing hormone responses to various gonadotropic regulators were variably affected, with partially blunted relative (but not absolute) responses to kisspeptin-10, NMDA and the agonist of tachykinin receptors, NK2R. Our data confirm that direct effects of kisspeptins on GnRH cells are sufficient to attain fertility. Yet, such direct actions appear to be insufficient to completely preserve proper functionality of gonadotropic axis, suggesting a role of kisspeptin signaling outside GnRH cells.


Assuntos
Fertilidade/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Retroalimentação Fisiológica , Feminino , Gonadotropinas/metabolismo , Masculino , Camundongos , Camundongos Knockout , Ovário/metabolismo , Ovário/ultraestrutura , Fenótipo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Reprodução , Testículo/metabolismo
12.
Endocrinology ; 156(12): 4639-48, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26418326

RESUMO

RF9, a reported antagonist of the mammalian gonadotropin-inhibitory hormone receptor, stimulates gonadotropin secretion in mammals. Recent studies have suggested that the stimulatory effect of RF9 on gonadotropin secretion relies on intact kisspeptin receptor (KISS1R) signaling, but the underlying mechanisms remain to be elucidated. Using Chinese Hamster Ovary cells stably transfected with KISS1R, we show that RF9 binds specifically to KISS1R, with a Kd of 1.6 × 10(-5)M, and stimulates an increase in intracellular calcium and inositol phosphate accumulation in a KISS1R-dependent manner, with EC50 values of 3.0 × 10(-6)M and 1.6 × 10(-7)M, respectively. RF9 also stimulated ERK phosphorylation, with a time course similar to that of kisspeptin-10. RFRP-3, the putative endogenous ligand for NPFFR1, did not stimulate inositol phosphate accumulation or pERK, nor did it alter responses to of kisspeptin-10 or RF9. In agreement with these in vitro data, we found that RF9 stimulated a robust LH increase in Npffr1(-/-) mice, similar to that in wild-type littermates, whereas the stimulatory effect of RF9 was markedly reduced in Kiss1r(-/-) and double Kiss1r(-/-)/Npfrr1(-/-) mice. The stimulatory effect of RF9 on LH secretion was restored by the selective rescue of Kiss1r expression in GnRH neurons, in Kiss1r(-/-T) mice. Taken together, our study demonstrates that RF9 acts primarily as a KISS1R agonist, but not as an allosteric modulator, to stimulate LH secretion. Our findings raise questions regarding the utility of RF9 for assessing NPFF1R function and de-emphasize a predominant role of this signaling system in central regulation of reproduction.


Assuntos
Adamantano/análogos & derivados , Dipeptídeos/farmacologia , Neuropeptídeos/farmacologia , Receptores Acoplados a Proteínas G/efeitos dos fármacos , Receptores de Neuropeptídeos/efeitos dos fármacos , Adamantano/farmacologia , Animais , Células CHO , Cálcio/metabolismo , Cricetulus , MAP Quinases Reguladas por Sinal Extracelular/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Técnicas In Vitro , Fosfatos de Inositol/metabolismo , Radioisótopos do Iodo , Kisspeptinas/metabolismo , Hormônio Luteinizante/efeitos dos fármacos , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Knockout , Neurônios/metabolismo , Ensaio Radioligante , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Receptores de Neuropeptídeos/genética
13.
Endocrinology ; 156(8): 2984-98, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25984764

RESUMO

The reproductive impact of persistent energy excess in the female remains incompletely defined, yet the escalating prevalence of obesity calls for better understanding of this phenomenon. Also along this line, the influence of ovarian hormones on the pathophysiology of obesity and its comorbidities merits further investigation. We study here the metabolic and gonadotropic impact of sequential obesogenic insults, namely postnatal overnutrition [by rearing in small litters (SL)] and high-fat diet (HFD) after weaning, in gonadal-intact and ovariectomized (OVX) female rats. In young (4 mo) females, SL or HFD similarly increased body weight, yet only a HFD evoked additional metabolic perturbations, some of which were worsened by precedent SL. In addition, HFD concomitantly decreased LH and estradiol levels and, when combined with SL, suppressed Kiss1 expression in the hypothalamic arcuate nucleus in 4-month females, whereas HFD up to 10-month also reduced LH responses to kisspeptin-10. OVX caused rapid deterioration of the metabolic profile, with overweight, increased energy intake, and deregulation of leptin and glucose/insulin levels, effects whose magnitude was similar to, if not higher than, HFD. Summation of previous obesogenic insults maximally increased body weight, basal leptin, insulin and glucose levels, and glucose intolerance. Yet OVX obliterated the inhibitory effects of overweight/HFD on gonadotropin levels and arcuate nucleus Kiss1 expression. Our study documents the deleterious consequences of sequential obesogenic insults on the female gonadotropin axis, which involve central impairment of the Kiss1 system. In addition, our work delineates the dramatic impact of the loss of ovarian secretions, as the menopausal model, on the metabolic profile of female rats, especially when combined with preceding obesogenic challenges.


Assuntos
Dieta Hiperlipídica , Gonadotrofos/fisiologia , Ovário/metabolismo , Hipernutrição/metabolismo , Hipernutrição/fisiopatologia , Envelhecimento/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Gonadotrofos/metabolismo , Fenômenos Fisiológicos da Nutrição , Obesidade/etiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Ovário/fisiopatologia , Ratos , Ratos Wistar , Reprodução/fisiologia
14.
Endocrinology ; 156(2): 627-37, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25422875

RESUMO

Tachykinins are comprised of the family of related peptides, substance P (SP), neurokinin A (NKA), and neurokinin B (NKB). NKB has emerged as regulator of kisspeptin release in the arcuate nucleus (ARC), whereas the roles of SP and NKA in reproduction remain unknown. This work explores the roles of SP and NKA in the central regulation of GnRH release. First, central infusion of specific agonists for the receptors of SP (neurokinin receptor 1, NK1R), NKA (NK2R) and NKB (NK3R) each induced gonadotropin release in adult male and ovariectomized, estradiol-replaced female mice, which was absent in Kiss1r(-/-) mice, indicating a kisspeptin-dependent action. The NK2R agonist, however, decreased LH release in ovariectomized-sham replaced females, as documented for NK3R agonists but in contrast to the NK1R agonist, which further increased LH release. Second, Tac1 (encoding SP and NKA) expression in the ARC and ventromedial nucleus was inhibited by circulating estradiol but did not colocalize with Kiss1 mRNA. Third, about half of isolated ARC Kiss1 neurons expressed Tacr1 (NK1R) and 100% Tacr3 (NK3R); for anteroventral-periventricular Kiss1 neurons and GnRH neurons, approximately one-fourth expressed Tacr1 and one-tenth Tacr3; Tacr2 (NK2R) expression was absent in all cases. Overall, these results identify a potent regulation of gonadotropin release by the SP/NK1R and NKA/NK2R systems in the presence of kisspeptin-Kiss1r signaling, indicating that they may, along with NKB/NK3R, control GnRH release, at least in part through actions on Kiss1 neurons.


Assuntos
Hipotálamo/metabolismo , Neurocinina A/metabolismo , Reprodução , Substância P/metabolismo , Animais , Estradiol/metabolismo , Feminino , Hormônio Foliculoestimulante/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Hormônio Luteinizante/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Kisspeptina-1 , Receptores de Taquicininas/agonistas
15.
Endocrinology ; 155(8): 2953-65, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24823392

RESUMO

RF-amide-related peptide-3 (RFRP-3), the mammalian ortholog of the avian gonadotropin-inhibiting hormone (GnIH), operates via the NPFF1 receptor (NPFF1R) to repress the reproductive axis, therefore acting as counterpart of the excitatory RF-amide peptide, kisspeptin (ligand of Gpr54). In addition, RFRP-3 modulates feeding and might contribute to the integrative control of energy homeostasis and reproduction. Yet, the experimental evidence supporting these putative functions is mostly indirect, and the physiological roles of RFRP-3 remain debatable and obscured by the lack of proper analytical tools and models. To circumvent these limitations, we characterize herein the first mouse line with constitutive inactivation of NPFF1R. Ablation of NPFF1R did not compromise fertility; rather, litters from NPFF1R null mice were larger than those from wild-type animals. Pubertal timing was not altered in NPFF1R deficient mice; yet, pre-pubertal knockout (KO) males displayed elevated LH levels, which normalized after puberty. Adult NPFF1R null male mice showed increased Kiss1 expression in the hypothalamic arcuate nucleus, higher serum FSH levels, and enhanced LH responses to GnRH. However, genetic elimination of NPFF1R was unable to reverse the state of hypogonadism caused by the lack of kisspeptin signaling, as revealed by double NPFF1R/Gpr54 KO mice. NPFF1R null mice displayed altered feedback responses to gonadal hormone withdrawal. In addition, metabolic challenges causing gonadotropin suppression, such as short-term fasting and high-fat diet, were less effective in dampening LH secretion in NPFF1R-deficient male mice, suggesting that absence of this inhibitory pathway partially prevented gonadotropin suppression by metabolic stress. Our data are the first to document the impact of elimination of GnIH signaling on reproductive parameters and their modulation by metabolic challenges. Whereas, in keeping with its inhibitory role, the NPFF1R pathway seems dispensable for preserved puberty and fertility, our results surface different alterations due to the lack of GnIH signaling that prominently include changes in the sensitivity to fasting- and obesity-associated hypogonadotropism.


Assuntos
Gonadotropinas/fisiologia , Tamanho da Ninhada de Vivíparos , Neuropeptídeos/fisiologia , Receptores de Neuropeptídeos/fisiologia , Maturidade Sexual , Animais , Jejum , Retroalimentação Fisiológica , Feminino , Fertilidade , Kisspeptinas/genética , Kisspeptinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuropeptídeos/deficiência , Neuropeptídeos/genética , Fenótipo , Receptores de Neuropeptídeos/deficiência , Receptores de Neuropeptídeos/genética , Maturidade Sexual/genética , Estresse Fisiológico/genética
16.
Cell Metab ; 20(1): 41-53, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24856932

RESUMO

Estrogens play a major role in the modulation of energy balance through central and peripheral actions. Here, we demonstrate that central action of estradiol (E2) inhibits AMP-activated protein kinase (AMPK) through estrogen receptor alpha (ERα) selectively in the ventromedial nucleus of the hypothalamus (VMH), leading to activation of thermogenesis in brown adipose tissue (BAT) through the sympathetic nervous system (SNS) in a feeding-independent manner. Genetic activation of AMPK in the VMH prevented E2-induced increase in BAT-mediated thermogenesis and weight loss. Notably, fluctuations in E2 levels during estrous cycle also modulate this integrated physiological network. Together, these findings demonstrate that E2 regulation of the VMH AMPK-SNS-BAT axis is an important determinant of energy balance and suggest that dysregulation in this axis may account for the common changes in energy homeostasis and obesity linked to dysfunction of the female gonadal axis.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Tecido Adiposo Marrom/metabolismo , Estradiol/farmacologia , Hipotálamo/efeitos dos fármacos , Termogênese/efeitos dos fármacos , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/química , Animais , Metabolismo Energético/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Feminino , Hipotálamo/enzimologia , Hipotálamo/metabolismo , Ovário/lesões , Ratos , Ratos Sprague-Dawley , Ratos Wistar , Sistema Nervoso Simpático/metabolismo
17.
Endocrinology ; 155(3): 1067-79, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24424048

RESUMO

Reproduction is sensitive to insufficient body energy reserves, especially in females. Metabolic regulation of the male reproductive axis is less obvious, and the impact of conditions of persistent energy excess has received moderate attention. Yet, the escalating prevalence of obesity and the clinical evidence of its deleterious effects on male fertility have raised considerable concerns. We report here phenotypic and mechanistic studies of the reproductive impact of postnatal nutritional manipulations (mainly overnutrition) coupled to a high-fat diet (HFD) after weaning. Metabolic and hormonal analyses in young (4 months old) and middle-aged (10 months old) animals revealed that HFD caused profound metabolic perturbations, including glucose intolerance, which were worsened by precedent postnatal overfeeding; these were detectable already in young males but aggravated in 10-month-old rats. Impairment of reproductive parameters took place progressively, and HFD alone was sufficient to explain most of these alterations, regardless of postnatal under- or overnutrition. In young males, testosterone (T) levels and steroidogenic enzyme expression were suppressed by HFD, without compensatory increases of LH levels, which were in fact partially inhibited in heavier males. In addition, obese males displayed suppressed hypothalamic Kiss1 expression despite low T, and HFD inhibited LH responses to kisspeptin. Overweight anticipated some of the neuroendocrine effects of aging, such as the suppression of hypothalamic Kiss1 expression and the decline in serum T and LH levels. Nonetheless, HFD per se caused a detectable worsening of key reproductive indices in middle-aged males, such as basal LH and FSH levels as well as LH responses to kisspeptin. Our study demonstrates that nutritional stress, especially HFD, has a profound deleterious impact on metabolic and gonadotropic function as well as on the Kiss1 system and precipitates neuroendocrine reproductive senescence in the male.


Assuntos
Dieta Hiperlipídica , Hipogonadismo/metabolismo , Hipogonadismo/patologia , Kisspeptinas/metabolismo , Sistemas Neurossecretores/fisiologia , Obesidade/patologia , Animais , Peso Corporal , Regulação da Expressão Gênica , Teste de Tolerância a Glucose , Hipogonadismo/etiologia , Hipotálamo/metabolismo , Hibridização In Situ , Hormônio Luteinizante/sangue , Masculino , Obesidade/complicações , Fenótipo , Ratos , Ratos Wistar , Reprodução , Fatores Sexuais , Testosterona/metabolismo , Fatores de Tempo
18.
Neuroendocrinology ; 98(1): 38-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23485923

RESUMO

BACKGROUND: VGF (non-acronymic), a protein expressed in the hypothalamus and pituitary, is involved in the control of metabolism and body weight homeostasis. Different active peptide fragments are generated from VGF, including TLQP-21. Previous studies of our group reported that this molecule participates also in the regulation of reproductive function in male rats, with predominant stimulatory effects. METHODS: We report herein a series of studies on the reproductive effects of TLQP-21 in female rats, as evaluated by a combination of in vivo and in vitro analyses. RESULTS: TLQP-21 modestly increased serum LH levels after systemic administration and directly stimulated pituitary LH and FSH secretion in prepubertal female rats, while acute central injection of TLQP-21 was unable to modify LH secretion at this age. Repeated central administration of TLQP-21 during the pubertal transition (between PND-28 and -35) to female rats fed ad libitum advanced the timing of vaginal opening and increased the percentage of animals with signs of ovulation. Moreover, an analogous treatment slightly enhanced ovarian maturation in pubertal female rats subjected to chronic undernutrition, but was unable to rescue the delay of vaginal opening induced by food deprivation. In addition, TLQP-21 oppositely modified LH secretion in adult female rats depending on the stage of the ovarian cycle: it stimulated LH secretion when injected in the morning of diestrus and decreased the magnitude of the preovulatory LH (but not FSH) surge when injected in the afternoon of proestrus. CONCLUSIONS: Our data are the first to document the potential involvement of TLQP-21 in the control of reproductive function in female rats.


Assuntos
Neuropeptídeos/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Reprodução/efeitos dos fármacos , Caracteres Sexuais , Sequência de Aminoácidos , Animais , Feminino , Hormônio Foliculoestimulante/sangue , Homeostase/fisiologia , Hormônio Luteinizante/sangue , Masculino , Microinjeções , Dados de Sequência Molecular , Neuropeptídeos/genética , Fragmentos de Peptídeos/genética , Ratos , Ratos Wistar , Reprodução/fisiologia , Resultado do Tratamento
19.
Endocrinology ; 154(3): 1321-36, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23337528

RESUMO

Lin28 (also termed Lin28a) and Lin28b are related RNA-binding proteins, involved in the control of microRNA synthesis, especially of the let-7 family, with putative functions in early (embryo) development. However, their roles during postnatal maturation remain ill defined. Despite the general assumption that Lin28 and Lin28b share similar targets and functions, conclusive demonstration of such redundancy is still missing. In addition, recent observations suggest a role of Lin28 proteins in mammalian reproduction, which is yet to be defined. We document herein the patterns of RNA expression and protein distribution of Lin28 and Lin28b in mouse testis during postnatal development and in a model of hypogonadotropic hypogonadism as a result of inactivation of the kisspeptin receptor, Gpr54. Lin28 and Lin28b mRNAs were expressed in mouse testis across postnatal maturation, but their levels disparately varied between neonatal and pubertal periods, with peak Lin28 levels in infantile testes and sustained elevation of Lin28b mRNA in young adult male gonads, where relative levels of let-7a and let-7b miRNAs were significantly suppressed. In addition, Lin28 peptides displayed totally different patterns of cellular distribution in mouse testis: Lin28 was located in undifferentiated and type-A1 spermatogonia, whereas Lin28b was confined to spermatids and interstitial Leydig cells. These profiles were perturbed in Gpr54 null mouse testis, which showed preserved but irregular Lin28 signal and absence of Lin28b peptide, which was rescued by administration of gonadotropins, mainly hCG (as super-agonist of LH). In addition, increased relative levels of Lin28, but not Lin28b, mRNA and of let-7a/let-7b miRNAs were observed in Gpr54 KO mouse testes. Altogether, our data are the first to document the divergent patterns of cellular distribution and mRNA expression of Lin28 and Lin28b in the mouse testis along postnatal maturation and their alteration in a model of congenital hypogonadotropic hypogonadism. Our findings suggest distinct functional roles of these two related, but not overlapping, miRNA-binding proteins in the male gonad.


Assuntos
Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Hipogonadismo/genética , Hipogonadismo/metabolismo , MicroRNAs/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Animais , Sequência de Bases , Modelos Animais de Doenças , Regulação da Expressão Gênica no Desenvolvimento , Hipogonadismo/congênito , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Modelos Biológicos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Receptores de Kisspeptina-1 , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espermatogênese/genética , Espermatogênese/fisiologia
20.
Am J Physiol Endocrinol Metab ; 303(10): E1252-63, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23011064

RESUMO

Kisspeptins (Kp), products of the Kiss1 gene, have emerged as essential elements in the control of GnRH neurons and gonadotropic secretion. However, despite considerable progress in the field, to date limited attention has been paid to elucidate the potential interactions of Kp with other neurotransmitters known to centrally regulate the gonadotropic axis. We characterize herein the impact of manipulations of key aminoacidergic (glutamate and GABA), peptidergic (NKB, Dyn, and MCH), and gaseous [nitric oxide (NO)] neurotransmission on gonadotropin responses to Kp-10 in male rats. Blockade of ionotropic glutamate receptors (of the NMDA and non-NMDA type) variably decreased LH responses to Kp-10, whereas activation of both ionotropic and metabotropic receptors, which enhanced LH and FSH release per se, failed to further increase gonadotropin responses to Kp-10. In fact, coactivation of metabotropic receptors attenuated LH and FSH responses to Kp-10. Selective activation of GABA(A) receptors decreased Kp-induced gonadotropin secretion, whereas their blockade elicited robust LH and FSH bursts and protracted responses to Kp-10 when combined with GABA(B) receptor inhibition. Blockade of Dyn signaling (at κ-opioid receptors) enhanced LH responses to Kp-10, whereas activation of Dyn and NKB signaling modestly reduced Kp-induced LH and FSH release. Finally, MCH decreased basal LH secretion and modestly reduced FSH responses to Kp-10, whereas LH responses to Kp-10 were protracted after inhibition of NO synthesis. In summary, we present herein evidence for the putative roles of glutamate, GABA, Dyn, NKB, MCH, and NO in modulating gonadotropic responses to Kp in male rats. Our pharmacological data will help to characterize the central interactions and putative hierarchy of key neuroendocrine pathways involved in the control of the gonadotropic axis.


Assuntos
Hormônio Foliculoestimulante/metabolismo , Kisspeptinas/farmacologia , Hormônio Luteinizante/metabolismo , Transmissão Sináptica/efeitos dos fármacos , Animais , Dineínas/antagonistas & inibidores , Dineínas/metabolismo , Hormônio Foliculoestimulante/sangue , Ácido Glutâmico/metabolismo , Hormônios Hipotalâmicos/agonistas , Hormônios Hipotalâmicos/antagonistas & inibidores , Hormônios Hipotalâmicos/metabolismo , Hormônio Luteinizante/sangue , Masculino , Melaninas/agonistas , Melaninas/antagonistas & inibidores , Melaninas/metabolismo , Neurocinina B/agonistas , Neurocinina B/antagonistas & inibidores , Neurocinina B/metabolismo , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico/metabolismo , Hormônios Hipofisários/agonistas , Hormônios Hipofisários/antagonistas & inibidores , Hormônios Hipofisários/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais/efeitos dos fármacos , Ácido gama-Aminobutírico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...