Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 44(4): 843-865, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385286

RESUMO

BACKGROUND: Accumulating evidence implicates the activation of G-protein-coupled PARs (protease-activated receptors) by coagulation proteases in the regulation of innate immune responses. METHODS: Using mouse models with genetic alterations of the PAR2 signaling platform, we have explored contributions of PAR2 signaling to infection with coxsackievirus B3, a single-stranded RNA virus provoking multiorgan tissue damage, including the heart. RESULTS: We show that PAR2 activation sustains correlates of severe morbidity-hemodynamic compromise, aggravated hypothermia, and hypoglycemia-despite intact control of the virus. Following acute viral liver injury, canonical PAR2 signaling impairs the restoration process associated with exaggerated type I IFN (interferon) signatures in response to viral RNA recognition. Metabolic profiling in combination with proteomics of liver tissue shows PAR2-dependent reprogramming of liver metabolism, increased lipid droplet storage, and gluconeogenesis. PAR2-sustained hypodynamic compromise, reprograming of liver metabolism, as well as imbalanced IFN responses are prevented in ß-arrestin coupling-deficient PAR2 C-terminal phosphorylation mutant mice. Thus, wiring between upstream proteases and immune-metabolic responses results from biased PAR2 signaling mediated by intracellular recruitment of ß-arrestin. Importantly, blockade of the TF (tissue factor)-FVIIa (coagulation factor VIIa) complex capable of PAR2 proteolysis with the NAPc2 (nematode anticoagulant protein c2) mitigated virus-triggered pathology, recapitulating effects seen in protease cleavage-resistant PAR2 mice. CONCLUSIONS: These data provide insights into a TF-FVIIa signaling axis through PAR2-ß-arrestin coupling that is a regulator of inflammation-triggered tissue repair and hemodynamic compromise in coxsackievirus B3 infection and can potentially be targeted with selective coagulation inhibitors.


Assuntos
Insuficiência de Múltiplos Órgãos , Tromboplastina , Animais , Camundongos , Tromboplastina/metabolismo , beta-Arrestinas/metabolismo , Receptor PAR-2/genética , Fator VIIa/metabolismo , Endopeptidases/metabolismo
2.
Viruses ; 14(4)2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35458499

RESUMO

Enteroviruses (EV) are implicated in an extensive range of clinical manifestations, such as pancreatic failure, cardiovascular disease, hepatitis, and meningoencephalitis. We recently reported on the biochemical properties of the highly conserved cysteine residue at position 38 (C38) of enteroviral protein 3A and demonstrated a C38-mediated homodimerization of the Coxsackievirus B3 protein 3A (CVB3-3A) that resulted in its profound stabilization. Here, we show that residue C38 of protein 3A supports the replication of CVB3, a clinically relevant member of the enterovirus genus. The infection of HeLa cells with protein 3A cysteine 38 to alanine mutants (C38A) attenuates virus replication, resulting in comparably lower virus particle formation. Consistently, in a mouse infection model, the enhanced virus propagation of CVB3-3A wt in comparison to the CVB3-3A[C38A] mutant was confirmed and found to promote severe liver tissue damage. In contrast, infection with the CVB3-3A[C38A] mutant mitigated hepatic tissue injury and ameliorated the signs of systemic inflammatory responses, such as hypoglycemia and hypothermia. Based on these data and our previous report on the C38-mediated stabilization of the CVB3-3A protein, we conclude that the highly conserved amino acid C38 in protein 3A enhances the virulence of CVB3.


Assuntos
Infecções por Coxsackievirus , Infecções por Enterovirus , Enterovirus , Animais , Cisteína , Enterovirus Humano B/fisiologia , Células HeLa , Humanos , Camundongos , Virulência , Replicação Viral
3.
Viruses ; 13(7)2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202636

RESUMO

Infection of mice with Coxsackievirus B3 (CVB3) triggers inflammation of the heart and this mouse model is commonly used to investigate underlying mechanisms and therapeutic aspects for viral myocarditis. Virus-triggered cytotoxicity and the activity of infiltrating immune cells contribute to cardiac tissue injury. In addition to cardiac manifestation, CVB3 causes cell death and inflammation in the pancreas. The resulting pancreatitis represents a severe burden and under such experimental conditions, analgesics may be supportive to improve the animals' well-being. Notably, several known mechanisms exist by which analgesics can interfere with the immune system and thereby compromise the feasibility of the model. We set up a study aiming to improve animal welfare while ensuring model integrity and investigated how tramadol, an opioid, affects virus-induced pathogenicity and immune response in the heart. Tramadol was administered seven days prior to a CVB3 infection in C57BL/6 mice and treatment was continued until the day of analysis. Tramadol had no effect on the virus titer or viral pathogenicity in the heart tissue and the inflammatory response, a hallmark of myocardial injury, was maintained. Our results show that tramadol exerts no disruptive effects on the CVB3 myocarditis mouse model and, therefore, the demonstrated protocol should be considered as a general analgesic strategy for CVB3 infection.


Assuntos
Analgesia/métodos , Infecções por Coxsackievirus/complicações , Miocardite/tratamento farmacológico , Miocardite/virologia , Tramadol/uso terapêutico , Replicação Viral/efeitos dos fármacos , Animais , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Coração/efeitos dos fármacos , Coração/virologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tramadol/farmacologia , Carga Viral/efeitos dos fármacos
4.
Int J Mol Sci ; 22(3)2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33513663

RESUMO

The association of members of the enterovirus family with pregnancy complications up to miscarriages is under discussion. Here, infection of two different human induced pluripotent stem cell (iPSC) lines and iPSC-derived primary germ-layer cells with coxsackievirus B3 (CVB3) was characterized as an in vitro cell culture model for very early human development. Transcriptomic analysis of iPSC lines infected with recombinant CVB3 expressing enhanced green fluorescent protein (EGFP) revealed a reduction in the expression of pluripotency genes besides an enhancement of genes involved in RNA metabolism. The initial distribution of CVB3-EGFP-positive cells within iPSC colonies correlated with the distribution of its receptor coxsackie- and adenovirus receptor (CAR). Application of anti-CAR blocking antibodies supported the requirement of CAR, but not of the co-receptor decay-accelerating factor (DAF) for infection of iPSC lines. Among iPSC-derived germ-layer cells, mesodermal cells were especially vulnerable to CVB3-EGFP infection. Our data implicate further consideration of members of the enterovirus family in the screening program of human pregnancies. Furthermore, iPSCs with their differentiation capacity into cell populations of relevant viral target organs could offer a reliable screening approach for therapeutic intervention and for assessment of organ-specific enterovirus virulence.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/virologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Camadas Germinativas/metabolismo , Camadas Germinativas/virologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Antígenos CD55/genética , Antígenos CD55/metabolismo , Linhagem Celular , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Infecções por Coxsackievirus/genética , Ectoderma/metabolismo , Endoderma/metabolismo , Enterovirus Humano B/metabolismo , Enterovirus Humano B/patogenicidade , Perfilação da Expressão Gênica , Camadas Germinativas/citologia , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Células-Tronco Pluripotentes Induzidas/virologia , Mesoderma/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , RNA/genética , RNA/metabolismo
5.
J Virol ; 94(19)2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32669334

RESUMO

Coxsackie B viruses (CVB) cause a wide spectrum of diseases, ranging from mild respiratory syndromes and hand, foot, and mouth disease to life-threatening conditions, such as pancreatitis, myocarditis, and encephalitis. Previously, we and others found that the soluble virus receptor trap sCAR-Fc strongly attenuates CVB3 infection in mice. In this study, we investigated whether treatment with sCAR-Fc results in development of resistance by CVB3. Two CVB3 strains (CVB3-H3 and CVB3 Nancy) were passaged in HeLa cells in the presence of sCAR-Fc. The CVB3-H3 strain did not develop resistance, whereas two populations of CVB3 Nancy mutants emerged, one with complete (CVB3M) and one with partial (CVB3K) resistance. DNA sequence alignment of the resistant virus variant CVB3M with CVB3 Nancy revealed an amino acid exchange from Asn(N) to Ser(S) at position 139 of the CVB3 capsid protein VP2 (N2139S), an amino acid predicted to be involved in the virus's interaction with its cognate receptor CAR. Insertion of the N2139S mutation into CVB3-H3 by site-directed mutagenesis promoted resistance of the engineered CVB3-H3N2139S to sCAR-Fc. Interestingly, development of resistance by CVB3-H3N2139S and the exemplarily investigated CVB3M-clone 2 (CVB3M2) against soluble CAR did not compromise the use of cellular CAR for viral infection. Infection of HeLa cells showed that sCAR-Fc resistance, however, negatively affected both virus stability and viral replication compared to that of the parental strains. These data demonstrate that during sCAR-Fc exposure, CVB3 can develop resistance against sCAR-Fc by single-amino-acid exchanges within the virus-receptor binding site, which, however, come at the expense of viral fitness.IMPORTANCE The emergence of resistant viruses is one of the most frequent obstacles preventing successful therapy of viral infections, representing a significant threat to human health. We investigated the emergence of resistant viruses during treatment with sCAR-Fc, a well-studied, highly effective antiviral molecule against CVB infections. Our data show the molecular aspects of resistant CVB3 mutants that arise during repetitive sCAR-Fc usage. However, drug resistance comes at the price of lower viral fitness. These results extend our knowledge of the development of resistance by coxsackieviruses and indicate potential limitations of antiviral therapy using soluble receptor molecules.


Assuntos
Enterovirus Humano B/genética , Enterovirus Humano B/metabolismo , Mutação Puntual , Receptores Virais/genética , Receptores Virais/metabolismo , Sítios de Ligação/genética , Proteínas do Capsídeo/genética , Farmacorresistência Viral , Células HEK293 , Células HeLa , Humanos , Miocardite/virologia , Ligação Proteica , Alinhamento de Sequência , Análise de Sequência de DNA , Replicação Viral
6.
Cardiovasc Res ; 116(10): 1756-1766, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31598635

RESUMO

AIMS: The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS: We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-ßH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION: In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.


Assuntos
Infecções por Coxsackievirus/virologia , Enterovirus Humano B/patogenicidade , Miocardite/virologia , Miócitos Cardíacos/virologia , Pâncreas/virologia , Pancreatite/virologia , Regiões 3' não Traduzidas , Animais , Infecções por Coxsackievirus/metabolismo , Infecções por Coxsackievirus/patologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Feminino , Fibrose , Genótipo , Células HEK293 , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Miocardite/metabolismo , Miocardite/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Pancreatite/prevenção & controle , Fenótipo , Virulência , Replicação Viral
7.
FEBS Lett ; 594(4): 763-775, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31643074

RESUMO

Coxsackievirus B3 (CVB3) has potential as a new oncolytic agent for the treatment of cancer but can induce severe pancreatitis. Here, we inserted target sequences of the microRNA miR-375 (miR-375TS) into the 5' terminus of the polyprotein encoding sequence or into the 3'UTR of the CVB3 strain rCVB3.1 to prevent viral replication in the pancreas. In pancreatic EndoC-ßH1 cells expressing miR-375 endogenously, replication of the 5'-miR-375TS virus and that of the 3'-miR-375TS virus was reduced by 4 × 103 -fold and 3.9 × 104 -fold, respectively, compared to the parental rCVB3.1. In colorectal carcinoma cells, replication and cytotoxicity of both viruses were slightly reduced compared to rCVB3.1, but less pronounced for the 3'-miR-375TS virus. Thus, CVB3 with miR-375TS in the 3'UTR of the viral genome may be suitable to avoid pancreatic toxicity.


Assuntos
Enterovirus Humano B/genética , Engenharia Genética , MicroRNAs/genética , Pâncreas/citologia , Regiões 3' não Traduzidas/genética , Sequência de Bases , Linhagem Celular Tumoral , Células HEK293 , Humanos , Pâncreas/virologia
8.
Circ Heart Fail ; 12(11): e005250, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31718319

RESUMO

BACKGROUND: Coxsackie-B-viruses (CVB) are frequent causes of acute myocarditis and dilated cardiomyopathy, but an effective antiviral therapy is still not available. Previously, we and others have demonstrated that treatment with an engineered sCAR-Fc (soluble coxsackievirus-adenovirus receptor fused to the carboxyl-terminus of human IgG) efficiently neutralizes CVB3 and inhibits the development of cardiac dysfunction in mice with acute CVB3-induced myocarditis. In this study, we analyzed the potential of sCAR-Fc for treatment of chronic CVB3-induced myocarditis in an outbred NMRI mouse model. METHODS: NMRI mice were infected with the CVB3 strain 31-1-93 and treated with a sCAR-Fc expressing adeno-associated virus 9 vector 1, 3, and 7 days after CVB3 infection. Chronic myocarditis was analyzed on day 28 after infection. RESULTS: Initial investigations showed that NMRI mice develop pronounced chronic myocarditis between day 18 and day 28 after infection with the CVB3 strain 31-1-93. Chronic cardiac infection was characterized by inflammation and fibrosis as well as persistence of viral genomes in the heart tissue and by cardiac dysfunction. Treatment of NMRI mice resulted in a distinct reduction of cardiac inflammation and fibrosis and almost complete elimination of virus RNA from the heart by day 28 after infection. Moreover, hemodynamic measurement revealed improved cardiac contractility and diastolic relaxation in treated mice compared with mice treated with a control vector (mean±SD; maximal pressure, 81.9±9.2 versus 69.4±8.6 mm Hg, P=0.02; left ventricular ejection fraction, 68.9±8.5 versus 54.2±11.5%, P=0.02; dP/dtmax, 7275.2±1674 versus 4432.6±1107 mm Hg/s, P=0.004; dP/dtmin, -4046.9±776 versus -3146.3±642 mm Hg/s, P=0.046). The therapeutic potential of sCAR-Fc is limited, however, since postponed start of sCAR-Fc treatment either 3 or 7 days after infection could not attenuate myocardial injury. CONCLUSIONS: Early therapeutic employment of sCAR-Fc, initiated at the beginning of the primary viremia, inhibits the development of chronic CVB3-induced myocarditis and improves the cardiac function to a level equivalent to that of uninfected animals.


Assuntos
Antivirais/administração & dosagem , Cardiomiopatias/tratamento farmacológico , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Imunoconjugados/administração & dosagem , Imunoglobulina G/administração & dosagem , Miocardite/tratamento farmacológico , Receptores Virais/administração & dosagem , Animais , Cardiomiopatias/patologia , Cardiomiopatias/fisiopatologia , Cardiomiopatias/virologia , Doença Crônica , Infecções por Coxsackievirus/patologia , Infecções por Coxsackievirus/fisiopatologia , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/patogenicidade , Fibrose , Masculino , Camundongos , Miocardite/patologia , Miocardite/virologia , Miocárdio/patologia , Proteínas Recombinantes de Fusão/efeitos adversos , Função Ventricular Esquerda , Carga Viral
9.
Hum Gene Ther ; 29(11): 1301-1314, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29739251

RESUMO

Coxsackievirus B3 (CVB3), a single-stranded RNA virus of the picornavirus family, has been described as a novel oncolytic virus. However, the CVB3 strain used induced hepatitis and myocarditis in vivo. It was hypothesized that oncolytic activity and safety of CVB3 depends on the virus strain and its specific receptor tropism. Different laboratory strains of CVB3 (Nancy, 31-1-93, and H3), which use the coxsackievirus and adenovirus receptor (CAR), and the strain PD, which uses N- and 6-O-sulfated heparan sulfate (HS) for entry into the cells, were investigated for their potential to lyse tumor cells and for their safety profile. The investigations were carried out in colorectal carcinoma. In vitro investigations showed variable infection efficiency and lysis of colorectal carcinoma cell lines by the CVB3 strains. The most efficient strain was PD, which was the only one that could lyse all investigated colorectal carcinoma cell lines. Lytic activity of CAR-dependent CVB3 did not correlate with CAR expression on cells, whereas there was a clear correlation between lytic activity of PD and its ability to bind to HS at the cell surface of colorectal carcinoma cells. Intratumoral injection of Nancy, 31-1-93, or PD into subcutaneous colorectal DLD1 cell tumors in BALB/c nude mice resulted in strong inhibition of tumor growth. The effect was seen in the injected tumor, as well as in a non-injected, contralateral tumor. However, all animals treated with 31-1-93 and Nancy developed systemic infection and died or were moribund and sacrificed within 8 days post virus injection. In contrast, five of the six animals treated with PD showed no signs of a systemic viral infection, and PD was not detected in any organ. The data demonstrate the potential of PD as a new oncolytic virus and HS-binding of PD as a key feature of oncolytic activity and improved safety.


Assuntos
Neoplasias Colorretais/terapia , Neoplasias Colorretais/virologia , Enterovirus Humano B/metabolismo , Heparitina Sulfato/metabolismo , Vírus Oncolíticos/patogenicidade , Animais , Antígenos CD55/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Citotoxicidade Imunológica , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Especificidade de Órgãos , Receptores Virais/metabolismo , Carga Viral , Virulência
10.
EMBO Mol Med ; 10(2): 200-218, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295868

RESUMO

Severe heart pathology upon virus infection is closely associated with the immunological equipment of the host. Since there is no specific treatment available, current research focuses on identifying new drug targets to positively modulate predisposing immune factors. Utilizing a murine model with high susceptibility to coxsackievirus B3-induced myocarditis, this study describes ONX 0914-an immunoproteasome-specific inhibitor-as highly protective during severe heart disease. Represented by reduced heart infiltration of monocytes/macrophages and diminished organ damage, ONX 0914 treatment reversed fulminant pathology. Virus-induced immune response features like overwhelming pro-inflammatory cytokine and chemokine production as well as a progressive loss of lymphocytes all being reminiscent of a sepsis-like disease course were prevented by ONX 0914. Although the viral burden was only minimally affected in highly susceptible mice, resulting maintenance of immune homeostasis improved the cardiac output, and saved animals from severe illness as well as high mortality. Altogether, this could make ONX 0914 a potent drug for the treatment of severe virus-mediated inflammation of the heart and might rank immunoproteasome inhibitors among drugs for preventing pathogen-induced immunopathology.


Assuntos
Infecções por Coxsackievirus/imunologia , Enterovirus/efeitos dos fármacos , Miocardite/tratamento farmacológico , Miocardite/virologia , Oligopeptídeos/farmacologia , Inibidores de Proteassoma/farmacologia , Animais , Débito Cardíaco , Células Cultivadas , Infecções por Coxsackievirus/tratamento farmacológico , Memória Imunológica , Camundongos , Modelos Animais , Miocardite/imunologia , Oligopeptídeos/imunologia , Oligopeptídeos/uso terapêutico , Inibidores de Proteassoma/imunologia , Inibidores de Proteassoma/uso terapêutico
11.
Eur Heart J ; 39(10): 876-887, 2018 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-29136142

RESUMO

Aims: Foxo3 is a transcription factor involved in cell metabolism, survival, and inflammatory disease. However, mechanistic insight in Foxo3 effects is still limited. Here, we investigated the role of Foxo3 on natural killer (NK) cell responses and its effects in viral myocarditis. Methods and results: Effects of Foxo3 on viral load and immune responses were investigated in a model of coxsackie virus B3 myocarditis in wild-type (WT) and Foxo3 deficient mice. Reduced immune cell infiltration, viral titres, and pro-inflammatory cytokines in cardiac tissue were observed in Foxo3-/- mice 7 days post-infection (p.i.). Viral titres were also attenuated in hearts of Foxo3-/- mice at Day 3 while interferon-γ (IFNγ) and NKp46 expression were up-regulated suggesting early viral control by enhanced NK cell activity. CD69 expression of NK cells, frequencies of CD11b+CD27+ effector NK cells and cytotoxicity of Foxo3-/- mice was enhanced compared to WT littermates. Moreover, microRNA-155 expression, essential in NK cell activation, was elevated in Foxo3-/- NK cells while its inhibition led to diminished IFNγ production. Healthy humans carrying the longevity-associated FOXO3 single nucleotide polymorphism (SNP) rs12212067 exhibited reduced IFNγ and cytotoxic degranulation of NK cells. Viral inflammatory cardiomyopathy (viral CMI) patients with this SNP showed a poorer outcome due to less efficient virus control. Conclusion: Our results implicate Foxo3 in regulating NK cell function and suggest Foxo3 playing an important role in the antiviral innate immunity. Thus, enhanced FOXO3 activity such as in the polymorphism rs12212067 may be protective in chronic inflammation such as cancer and cardiovascular disease but disadvantageous to control acute viral infection.


Assuntos
Proteína Forkhead Box O3 , Células Matadoras Naturais/imunologia , Miocardite , Adulto , Animais , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/virologia , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/imunologia , Proteína Forkhead Box O3/metabolismo , Coração/virologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Miocardite/imunologia , Miocardite/patologia , Miocardite/virologia , Miocárdio/imunologia , Miocárdio/patologia , Polimorfismo de Nucleotídeo Único
12.
ACS Infect Dis ; 3(12): 886-897, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29043768

RESUMO

Human induced pluripotent stem cell (iPSC) lines are a promising model for the early phase of human embryonic development. Here, their contribution to the still incompletely understood pathogenesis of congenital virus infections was evaluated. The infection of iPSC lines with miscarriage-associated coxsackievirus B3 (CVB3) and measles virus (MV) was compared to the efficient teratogen rubella virus (RV). While CVB3 and MV were found to be cytopathogenic on iPSC lines, RV replicated without impairment of iPSC colony morphology and integrity. This so far outstanding course of infection enabled maintenance of RV-infected iPSC cultures over several passages and their subsequent differentiation to ectoderm, endoderm, and mesoderm. A modification of the metabolic profile of infected iPSC lines was the only common aspect for all three viruses. This study points toward two important aspects. First, iPSC lines represent a suitable cell culture model for early embryonic virus infection. Second, metabolic activity represents an important means for evaluation of pathogen-associated alterations in iPSC lines.


Assuntos
Aborto Espontâneo/etiologia , Desenvolvimento Embrionário , Enterovirus Humano B/patogenicidade , Células-Tronco Pluripotentes Induzidas/virologia , Vírus do Sarampo/patogenicidade , Vírus da Rubéola/patogenicidade , Teratogênese , Animais , Caspases/fisiologia , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/fisiologia , Replicação Viral
13.
Mol Ther Nucleic Acids ; 8: 300-316, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28918031

RESUMO

Infections of immunocompromised patients with human adenoviruses (hAd) can develop into life-threatening conditions, whereas drugs with anti-adenoviral efficiency are not clinically approved and have limited efficacy. Small double-stranded RNAs that induce RNAi represent a new class of promising anti-adenoviral therapeutics. However, as yet, their efficiency to treat hAd5 infections has only been investigated in vitro. In this study, we analyzed artificial microRNAs (amiRs) delivered by self-complementary adeno-associated virus (scAAV) vectors for treatment of hAd5 infections in immunosuppressed Syrian hamsters. In vitro evaluation of amiRs targeting the E1A, pTP, IVa2, and hexon genes of hAd5 revealed that two scAAV vectors containing three copies of amiR-pTP and three copies of amiR-E1A, or six copies of amiR-pTP, efficiently inhibited hAd5 replication and improved the viability of hAd5-infected cells. Prophylactic application of amiR-pTP/amiR-E1A- and amiR-pTP-expressing scAAV9 vectors, respectively, to immunosuppressed Syrian hamsters resulted in the reduction of hAd5 levels in the liver of up to two orders of magnitude and in reduction of liver damage. Concomitant application of the vectors also resulted in a decrease of hepatic hAd5 infection. No side effects were observed. These data demonstrate anti-adenoviral RNAi as a promising new approach to combat hAd5 infection.

14.
Circ Heart Fail ; 10(9)2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28912259

RESUMO

BACKGROUND: The cytoplasmatic pattern recognition receptor, NOD2 (nucleotide-binding oligomerization domain 2), belongs to the innate immune system and is among others responsible for the recognition of single-stranded RNA. With Coxsackievirus B3 (CVB3) being a single-stranded RNA virus, and the recent evidence that the NOD2 target, NLRP3 (NOD-like receptor family, pyrin domain containing 3) is of importance in the pathogenesis of CVB3-induced myocarditis, we aimed to unravel the role of NOD2 in CVB3-induced myocarditis. METHODS AND RESULTS: Endomyocardial biopsy NOD2 mRNA expression was higher in CVB3-positive patients compared with patients with myocarditis but without evidence of persistent CVB3 infection. Left ventricular NOD2 mRNA expression was also induced in CVB3-induced myocarditis versus healthy control mice. NOD2 knockdown(-/-) mice were rescued from the detrimental CVB3-mediated effects as shown by a reduced cardiac inflammation (less cardiac infiltrates and suppression of proinflammatory cytokines), cardiac fibrosis, apoptosis, lower CAR (Coxsackievirus and adenovirus receptor) expression and CVB3 copy number, and an improved left ventricular function in NOD2-/- CVB3 mice compared with wild-type CVB3 mice. In agreement, NOD2-/- decreased the CVB3-induced inflammatory response, CVB3 copy number, and apoptosis in vitro. NOD2-/- was further associated with a reduction in CVB3-induced NLRP3 expression and activity as evidenced by lower ASC (apoptosis-associated speck-like protein containing a CARD) expression, caspase 1 activity, or IL-1ß (interleukin-1ß) protein expression under in vivo and in vitro CVB3 conditions. CONCLUSIONS: NOD2 is an important mediator in the viral uptake and inflammatory response during the pathogenesis of CVB3 myocarditis.


Assuntos
Infecções por Coxsackievirus/metabolismo , Enterovirus Humano B/metabolismo , Miocardite/metabolismo , Miocárdio/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Animais , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas Adaptadoras de Sinalização CARD , Estudos de Casos e Controles , Caspase 1/metabolismo , Linhagem Celular , Infecções por Coxsackievirus/imunologia , Infecções por Coxsackievirus/prevenção & controle , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Enterovirus Humano B/genética , Enterovirus Humano B/imunologia , Predisposição Genética para Doença , Interações Hospedeiro-Patógeno , Humanos , Interleucina-1beta/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miocardite/imunologia , Miocardite/prevenção & controle , Miocardite/virologia , Miocárdio/imunologia , Miocárdio/patologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteína Adaptadora de Sinalização NOD2/deficiência , Proteína Adaptadora de Sinalização NOD2/genética , Fenótipo , Interferência de RNA , Transdução de Sinais , Transfecção , Regulação para Cima
15.
Antiviral Res ; 136: 1-8, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27773751

RESUMO

Coxsackie-B-viruses (CVB) cause a wide variety of diseases, ranging from mild syndromes to life-threatening conditions such as pancreatitis, myocarditis, meningitis and encephalitis. Especially newborns and young infants develop severe diseases and long-term sequelae may occur among survivors. Due to lack of specific antiviral therapy the current treatment of CVB infection is limited to symptomatic treatment. Here we analyzed the antiviral activity of a soluble receptor fusion protein, containing the extracellular part of the coxsackievirus and adenovirus receptor (CAR) fused to the constant domain of the human IgG - sCAR-Fc - against laboratory and clinical CVB strains. We found a high overall antiviral activity of sCAR-Fc against various prototypic laboratory strains of CVB, with an inhibition of viral replication up to 3 orders of magnitude (99.9%) at a concentration of 2.5 µg/ml. These include isolates that are not dependent on CAR for infection and isolates that are resistant against pleconaril, the currently most promising anti-CVB therapeutic. A complete inhibition was observed using higher concentration of sCAR-Fc. Further analysis of 23 clinical CVB isolates revealed overall high antiviral efficiency (up to 99.99%) of sCAR-Fc. In accordance with previous data, our results confirm the strong antiviral activity of sCAR-Fc against laboratory CVB strains and demonstrate for the first time that sCAR-Fc is also highly efficient at neutralizing clinical CVB isolates. Importantly, during the sCAR-Fc inhibition experiments, no naturally occurring resistant mutants were observed.


Assuntos
Antivirais/farmacologia , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/farmacologia , Enterovirus Humano B/efeitos dos fármacos , Imunoglobulina G/genética , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Infecções por Coxsackievirus/tratamento farmacológico , Infecções por Coxsackievirus/virologia , Células HeLa , Humanos , Imunoglobulina G/farmacologia , Receptores de IgG , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , Solubilidade , Replicação Viral/efeitos dos fármacos
16.
J Virol ; 90(12): 5601-5610, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27030267

RESUMO

UNLABELLED: The coxsackievirus and adenovirus receptor (CAR) is a member of the immunoglobulin superfamily (IgSF) and functions as a receptor for coxsackie B viruses (CVBs). The extracellular portion of CAR comprises two glycosylated immunoglobulin-like domains, D1 and D2. CAR-D1 binds to the virus and is essential for virus infection; however, it is not known whether D2 is also important for infection, and the role of glycosylation has not been explored. To understand the function of these structural components in CAR-mediated CVB3 infection, we generated a panel of human (h) CAR deletion and substitution mutants and analyzed their functionality as CVB receptors, examining both virus binding and replication. Lack of glycosylation of the CAR-D1 or -D2 domains did not adversely affect CVB3 binding or infection, indicating that the glycosylation of CAR is not required for its receptor functions. Deletion of the D2 domain reduced CVB3 binding, with a proportionate reduction in the efficiency of virus infection. Replacement of D2 with the homologous D2 domain from chicken CAR, or with the heterologous type C2 immunoglobulin-like domain from IgSF11, another IgSF member, fully restored receptor function; however, replacement of CAR-D2 with domains from CD155 or CD80 restored function only in part. These data indicate that glycosylation of the extracellular domain of hCAR plays no role in CVB3 receptor function and that CAR-D2 is not specifically required. The D2 domain may function largely as a spacer permitting virus access to D1; however, the data may also suggest that D2 affects virus binding by influencing the conformation of D1. IMPORTANCE: An important step in virus infection is the initial interaction of the virus with its cellular receptor. Although the role in infection of the extracellular CAR-D1, cytoplasmic, and transmembrane domains have been analyzed extensively, nothing is known about the function of CAR-D2 and the extracellular glycosylation of CAR. Our data indicate that glycosylation of the extracellular CAR domain has only minor importance for the function of CAR as CVB3 receptor and that the D2 domain is not essential per se but contributes to receptor function by promoting the exposure of the D1 domain on the cell surface. These results contribute to our understanding of the coxsackievirus-receptor interactions.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/química , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/metabolismo , Enterovirus Humano B/fisiologia , Ligação Viral , Animais , Células CHO , Galinhas , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/genética , Cricetulus , Enterovirus Humano B/química , Glicosilação , Células HeLa , Humanos , Domínios de Imunoglobulina/genética , Mutação , Replicação Viral
17.
Antivir Ther ; 21(7): 559-566, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27032991

RESUMO

Adenovirus (Ad) infections are usually mild and self-limiting, but severe systemic infections and fatal diseases can occur, especially in immunosuppressed patients. Anti-adenoviral pharmacotherapy has been proven to inhibit Ad infection, but its efficiency is limited. This review addresses biological antiviral agents as a new class of therapeutics for treatment of Ad infections. One group of agents is composed of short double-stranded RNA molecules that have been developed to inhibit Ad receptor and Ad protein expression. The second group of agents includes soluble virus receptor traps which inhibit Ad uptake into cells. Anti-Ad-adoptive T-cell therapy constitutes a third approach. We also outline how the combination of biological antiviral agents and combinations of these agents with the classical antiviral drugs can increase therapeutic efficiency in anti-adenoviral treatments.


Assuntos
Infecções por Adenoviridae/terapia , Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Animais , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/fisiologia , Humanos , Imunoterapia Adotiva , RNA de Cadeia Dupla/uso terapêutico
18.
J Infect Dis ; 211(4): 613-22, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25193982

RESUMO

BACKGROUND: Coxsackievirus B3 (CVB3) is a major heart pathogen against which no therapy exists to date. The potential of a combination treatment consisting of a proteinaceous virus receptor trap and an RNA interference-based component to prevent CVB3-induced myocarditis was investigated. METHODS AND RESULTS: A soluble variant of the extracellular domain of the coxsackievirus-adenovirus receptor (sCAR-Fc) was expressed from an adenoviral vector and 2 short hairpin RNAs (shRdRp2.4) directed against CVB3 were delivered by an adeno-associated virus (AAV) vector. Cell culture experiments revealed additive antiviral activity of the combined application. In a CVB3-induced mouse myocarditis model, both components applied individually significantly reduced inflammation and viral load in the heart. The combination exerted an additive antiviral effect and reduced heart pathology. Hemodynamic measurement revealed that infection with CVB3 resulted in impaired heart function, as illustrated by a drastically reduced cardiac output and impaired contractility and relaxation. Treatment with either sCAR-Fc or shRdRp2.4 significantly improved these parameters. Importantly, the combination of both components led to a further significant improvement of heart function. CONCLUSIONS: Combination of sCAR-Fc and shRdRp2.4 exerted additive effects and was significantly more effective than either of the single treatments in inhibiting CVB3-induced myocarditis and preventing cardiac dysfunction.


Assuntos
Antivirais/farmacologia , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/efeitos dos fármacos , Terapia Genética/métodos , Miocardite/tratamento farmacológico , Interferência de RNA , Animais , Antivirais/metabolismo , Infecções por Coxsackievirus/virologia , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Miocardite/virologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo , Carga Viral/efeitos dos fármacos
19.
Mol Cell Proteomics ; 13(8): 2132-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24969177

RESUMO

Herpesviral capsids are assembled in the host cell nucleus before being translocated into the cytoplasm for further maturation. The crossing of the nuclear envelope represents a major event that requires the formation of the nuclear egress complex (NEC). Previous studies demonstrated that human cytomegalovirus (HCMV) proteins pUL50 and pUL53, as well as their homologs in all members of Herpesviridae, interact with each other at the nuclear envelope and form the heterodimeric core of the NEC. In order to characterize further the viral and cellular protein content of the multimeric NEC, the native complex was isolated from HCMV-infected human primary fibroblasts at various time points and analyzed using quantitative proteomics. Previously postulated components of the HCMV-specific NEC, as well as novel potential NEC-associated proteins such as emerin, were identified. In this regard, interaction and colocalization between emerin and pUL50 were confirmed by coimmunoprecipitation and confocal microscopy analyses, respectively. A functional validation of viral and cellular NEC constituents was achieved through siRNA-mediated knockdown experiments. The important role of emerin in NEC functionality was demonstrated by a reduction of viral replication when emerin expression was down-regulated. Moreover, under such conditions, reduced production of viral proteins and deregulation of viral late cytoplasmic maturation were observed. Combined, these data prove the functional importance of emerin as an NEC component, associated with pUL50, pUL53, pUL97, p32/gC1qR, and further regulatory proteins. Summarized, our findings provide the first proteomics-based characterization and functional validation of the HCMV-specific multimeric NEC.


Assuntos
Citomegalovirus/fisiologia , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Proteômica/métodos , Proteínas Virais/metabolismo , Animais , Fibroblastos/virologia , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Camundongos
20.
J Virol ; 88(13): 7345-56, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24741103

RESUMO

UNLABELLED: The coxsackievirus and adenovirus receptor (CAR) is a cell contact protein with an important role in virus uptake. Its extracellular immunoglobulin domains mediate the binding to coxsackievirus and adenovirus as well as homophilic and heterophilic interactions between cells. The cytoplasmic tail links CAR to the cytoskeleton and intracellular signaling cascades. In the heart, CAR is crucial for embryonic development, electrophysiology, and coxsackievirus B infection. Noncardiac functions are less well understood, in part due to the lack of suitable animal models. Here, we generated a transgenic mouse that rescued the otherwise embryonic-lethal CAR knockout (KO) phenotype by expressing chicken CAR exclusively in the heart. Using this rescue model, we addressed interspecies differences in coxsackievirus uptake and noncardiac functions of CAR. Survival of the noncardiac CAR KO (ncKO) mouse indicates an essential role for CAR in the developing heart but not in other tissues. In adult animals, cardiac activity was normal, suggesting that chicken CAR can replace the physiological functions of mouse CAR in the cardiomyocyte. However, chicken CAR did not mediate virus entry in vivo, so that hearts expressing chicken instead of mouse CAR were protected from infection and myocarditis. Comparison of sequence homology and modeling of the D1 domain indicate differences between mammalian and chicken CAR that relate to the sites important for virus binding but not those involved in homodimerization. Thus, CAR-directed anticoxsackievirus therapy with only minor adverse effects in noncardiac tissue could be further improved by selectively targeting the virus-host interaction while maintaining cardiac function. IMPORTANCE: Coxsackievirus B3 (CVB3) is one of the most common human pathogens causing myocarditis. Its receptor, the coxsackievirus and adenovirus receptor (CAR), not only mediates virus uptake but also relates to cytoskeletal organization and intracellular signaling. Animals without CAR die prenatally with major cardiac malformations. In the adult heart, CAR is important for virus entry and electrical conduction, but its nonmuscle functions are largely unknown. Here, we show that chicken CAR expression exclusively in the heart can rescue the otherwise embryonic-lethal CAR knockout phenotype but does not support CVB3 infection of adult cardiomyocytes. Our findings have implications for the evolution of virus-host versus physiological interactions involving CAR and could help to improve future coxsackievirus-directed therapies inhibiting virus replication while maintaining CAR's cellular functions.


Assuntos
Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus/fisiologia , Infecções por Coxsackievirus/prevenção & controle , Coração/fisiologia , Miocardite/prevenção & controle , Replicação Viral , Animais , Western Blotting , Células Cultivadas , Galinhas , Infecções por Coxsackievirus/virologia , Enterovirus Humano B/fisiologia , Imunofluorescência , Células HeLa , Coração/virologia , Humanos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Miocardite/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...