Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 28(3): 1141-55, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21059793

RESUMO

Sensing the environment and responding appropriately to it are key capabilities for the survival of an organism. All extant organisms must have evolved suitable sensors, signaling systems, and response mechanisms allowing them to survive under the conditions they are likely to encounter. Here, we investigate in detail the evolutionary history of one such system: The phage shock protein (Psp) stress response system is an important part of the stress response machinery in many bacteria, including Escherichia coli K12. Here, we use a systematic analysis of the genes that make up and regulate the Psp system in E. coli in order to elucidate the evolutionary history of the system. We compare gene sharing, sequence evolution, and conservation of protein-coding as well as noncoding DNA sequences and link these to comparative analyses of genome/operon organization across 698 bacterial genomes. Finally, we evaluate experimentally the biological advantage/disadvantage of a simplified version of the Psp system under different oxygen-related environments. Our results suggest that the Psp system evolved around a core response mechanism by gradually co-opting genes into the system to provide more nuanced sensory, signaling, and effector functionalities. We find that recruitment of new genes into the response machinery is closely linked to incorporation of these genes into a psp operon as is seen in E. coli, which contains the bulk of genes involved in the response. The organization of this operon allows for surprising levels of additional transcriptional control and flexibility. The results discussed here suggest that the components of such signaling systems will only be evolutionarily conserved if the overall functionality of the system can be maintained.


Assuntos
Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Evolução Molecular , Transativadores/genética , Transativadores/metabolismo , Sequência de Bases , Escherichia coli K12/metabolismo , Proteínas de Escherichia coli/classificação , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Estudos de Associação Genética , Genoma Bacteriano , Instabilidade Genômica/fisiologia , Genômica , Óperon , Filogenia , Estresse Fisiológico/fisiologia , Transativadores/classificação , Transcrição Gênica
2.
Biochem Soc Trans ; 31(Pt 6): 1513-5, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14641101

RESUMO

The mathematical structures known as Petri Nets have recently become the focus of much research effort in both the structural and quantitative analysis of all kinds of biological networks. This review provides a very brief summary of these interesting new research directions.


Assuntos
Biologia Computacional , Matemática , Modelos Teóricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA