Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Total Environ ; 671: 83-93, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-30927731

RESUMO

Plant-based biopesticides have become an eco-friendly alternative to synthetic pesticides by reducing the undesired environmental impacts and side-effects on human health. However, their effects on the environment and especially on non-target organisms have been little studied. This study analyses the ecotoxicological effects of the extract of Lavandula luisieri on soil non-target organisms from different trophic levels: the earthworm Eisenia fetida, the plant Allium cepa and a natural-soil microbial community whose taxonomy was analysed through 16S rRNA gene sequencing. The extract tested is the hydrolate -product from a semi industrial steam distillation process- of a Spanish pre-domesticated variety of L. luisieri. This hydrolate has been recently shown to have bionematicide activity against the root-knot nematode Meloidogyne javanica. A previous study showed that the main components of the hydrolate are camphor and 2,3,4,4-Tetramethyl-5-methylidenecyclopent-2-en-1-one. Hydrolate caused acute toxicity (LC50 2.2% v/v) on A. cepa, while only a slight toxicity on E. fetida (LC50 > 0.4 mL/g). All the concentrations tested (from 1 to 100% v/v) caused a significant decrease in bacterial growth (LC50 9.8% v/v after 120 h of exposure). The physiological diversity of the community was also significantly altered, except in the case of the lowest concentration of hydrolate (1% v/v). The ability of soil microbial communities to use a variety of carbon sources increased for all substrates at the highest concentrations. These results show that both the plants and bacterial communities of the soil can be affected by the application of biopesticides based on these hydrolates, which highlights the need for a more detailed risk assessment during the development of plant-based products.


Assuntos
Lavandula/química , Microbiota/efeitos dos fármacos , Oligoquetos/efeitos dos fármacos , Cebolas/efeitos dos fármacos , Praguicidas/efeitos adversos , Extratos Vegetais/efeitos adversos , Microbiologia do Solo , Animais , Extratos Vegetais/química , RNA Bacteriano/análise , RNA Ribossômico 16S/análise
3.
Sci Total Environ ; 595: 441-450, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395259

RESUMO

Pharmaceutical residues can enter the terrestrial environment through the application of recycled water and contaminated biosolids to agricultural soils, were edaphic microfauna can would be threatened. This study thus assessed the effect of 18 widely consumed pharmaceuticals, belonging to four groups: antibiotics, non-steroidal anti-inflammatory drugs (NSAIDs), blood lipid-lowering agents (BLLA) and ß-blockers, on the physiology of soil microbial communities from a ecological crop field. Biolog EcoPlates, containing 31 of the most common carbon sources found in forest and crop soils, were used to calculate both the averaged well colour development (AWCD), as an indicator of the entire capacity of degrading carbon sources, and the diversity of carbon source utilization, as an indicator of the physiological diversity. The results show that pharmaceuticals impact microbial communities by changing the ability of microbes to metabolize different carbon sources, thus affecting the metabolic diversity of the soil community. The toxicity of the pharmaceuticals was inversely related to the log Kow; indeed, NSAIDs were the least toxic and antibiotics were the most toxic, while BLLA and ß-blockers presented intermediate toxicity. The antibiotic sulfamethoxazole imposed the greatest impact on microbial communities at concentrations from 100 mg/L, followed by the other two antibiotics (trimethoprim and tetracycline) and the ß-blocker nadolol. Other chemical parameters (i.e. melting point, molecular weight, pKa or solubility) had little influence on toxicity. Microbial communities exposed to pharmaceuticals having similar physicochemical characteristics presented similar physiological diversity patterns of carbon substrate utilization. These results suggest that the repeated amendment of agricultural soils with biosolids or sludges containing pharmaceutical residuals may result in soil concentrations of concern regarding key ecological functions (i.e. the carbon cycle).


Assuntos
Biodiversidade , Preparações Farmacêuticas/análise , Microbiologia do Solo , Poluentes do Solo/análise , Agricultura , Carbono/análise , Solo/química , Espanha
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA