Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 7(6)2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33536214

RESUMO

Genetic assimilation-the evolutionary process by which an environmentally induced phenotype is made constitutive-represents a fundamental concept in evolutionary biology. Thought to reflect adaptive phenotypic plasticity, matricidal hatching in nematodes is triggered by maternal nutrient deprivation to allow for protection or resource provisioning of offspring. Here, we report natural Caenorhabditis elegans populations harboring genetic variants expressing a derived state of near-constitutive matricidal hatching. These variants exhibit a single amino acid change (V530L) in KCNL-1, a small-conductance calcium-activated potassium channel subunit. This gain-of-function mutation causes matricidal hatching by strongly reducing the sensitivity to environmental stimuli triggering egg-laying. We show that reestablishing the canonical KCNL-1 protein in matricidal isolates is sufficient to restore canonical egg-laying. While highly deleterious in constant food environments, KCNL-1 V530L is maintained under fluctuating resource availability. A single point mutation can therefore underlie the genetic assimilation-by either genetic drift or selection-of an ancestrally plastic trait.

2.
G3 (Bethesda) ; 9(9): 2811-2821, 2019 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-31278175

RESUMO

Partial selfing, whereby self- and cross- fertilization occur in populations at intermediate frequencies, is generally thought to be evolutionarily unstable. Yet, it is found in natural populations. This could be explained if populations with partial selfing are able to reduce genetic loads and the possibility for inbreeding depression while keeping genetic diversity that may be important for future adaptation. To address this hypothesis, we compare the experimental evolution of Caenorhabditis elegans populations under partial selfing, exclusive selfing or predominant outcrossing, while they adapt to osmotically challenging conditions. We find that the ancestral genetic load, as measured by the risk of extinction upon inbreeding by selfing, is maintained as long as outcrossing is the main reproductive mode, but becomes reduced otherwise. Analysis of genome-wide single-nucleotide polymorphisms (SNPs) during experimental evolution and among the inbred lines that survived enforced inbreeding indicates that populations with predominant outcrossing or partial selfing maintained more genetic diversity than expected with neutrality or purifying selection. We discuss the conditions under which this could be explained by the presence of recessive deleterious alleles and/or overdominant loci. Taken together, our observations suggest that populations evolving under partial selfing can gain some of the benefits of eliminating unlinked deleterious recessive alleles and also the benefits of maintaining genetic diversity at partially dominant or overdominant loci that become associated due to variance of inbreeding levels.


Assuntos
Caenorhabditis elegans/genética , Carga Genética , Variação Genética , Endogamia , Animais , Evolução Molecular , Feminino , Depressão por Endogamia , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Autofertilização
3.
PLoS Genet ; 14(11): e1007731, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30383789

RESUMO

Evolutionary responses to environmental change depend on the time available for adaptation before environmental degradation leads to extinction. Explicit tests of this relationship are limited to microbes where adaptation usually depends on the sequential fixation of de novo mutations, excluding standing variation for genotype-by-environment fitness interactions that should be key for most natural species. For natural species evolving from standing genetic variation, adaptation at slower rates of environmental change may be impeded since the best genotypes at the most extreme environments can be lost during evolution due to genetic drift or founder effects. To address this hypothesis, we perform experimental evolution with self-fertilizing populations of the nematode Caenorhabditis elegans and develop an inference model to describe natural selection on extant genotypes under environmental change. Under a sudden environmental change, we find that selection rapidly increases the frequency of genotypes with high fitness in the most extreme environment. In contrast, under a gradual environmental change selection first favors genotypes that are worse at the most extreme environment. We demonstrate with a second set of evolution experiments that, as a consequence of slower environmental change and thus longer periods to reach the most extreme environments, genetic drift and founder effects can lead to the loss of the most beneficial genotypes. We further find that maintenance of standing genetic variation can retard the fixation of the best genotypes in the most extreme environment because of interference between them. Taken together, these results show that slower environmental change can hamper adaptation from standing genetic variation and they support theoretical models indicating that standing variation for genotype-by-environment fitness interactions critically alters the pace and outcome of adaptation under environmental change.


Assuntos
Adaptação Biológica/genética , Meio Ambiente , Interação Gene-Ambiente , Variação Genética , Evolução Molecular , Aptidão Genética , Genética Populacional , Mutação , Reprodutibilidade dos Testes , Seleção Genética
4.
Genetics ; 207(4): 1663-1685, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29066469

RESUMO

Understanding the genetic basis of complex traits remains a major challenge in biology. Polygenicity, phenotypic plasticity, and epistasis contribute to phenotypic variance in ways that are rarely clear. This uncertainty can be problematic for estimating heritability, for predicting individual phenotypes from genomic data, and for parameterizing models of phenotypic evolution. Here, we report an advanced recombinant inbred line (RIL) quantitative trait locus mapping panel for the hermaphroditic nematode Caenorhabditis elegans, the C. elegans multiparental experimental evolution (CeMEE) panel. The CeMEE panel, comprising 507 RILs at present, was created by hybridization of 16 wild isolates, experimental evolution for 140-190 generations, and inbreeding by selfing for 13-16 generations. The panel contains 22% of single-nucleotide polymorphisms known to segregate in natural populations, and complements existing C. elegans mapping resources by providing fine resolution and high nucleotide diversity across > 95% of the genome. We apply it to study the genetic basis of two fitness components, fertility and hermaphrodite body size at time of reproduction, with high broad-sense heritability in the CeMEE. While simulations show that we should detect common alleles with additive effects as small as 5%, at gene-level resolution, the genetic architectures of these traits do not feature such alleles. We instead find that a significant fraction of trait variance, approaching 40% for fertility, can be explained by sign epistasis with main effects below the detection limit. In congruence, phenotype prediction from genomic similarity, while generally poor ([Formula: see text]), requires modeling epistasis for optimal accuracy, with most variance attributed to the rapidly evolving chromosome arms.


Assuntos
Evolução Molecular , Aptidão Genética , Herança Multifatorial/genética , Seleção Genética/genética , Alelos , Animais , Caenorhabditis elegans/genética , Cruzamentos Genéticos , Epistasia Genética , Hibridização Genética , Endogamia , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...