Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 14(48): 53936-53946, 2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36417669

RESUMO

The enantioselective discrimination of racemic compounds can be achieved through the design and preparation of a new family of chiral conjugated BINOL-porous polymers (CBPPs) from enantiopure (R)- or (S)-BINOL derivatives and 1,3,5-tris(4-phenylboronic acid)benzene or 1,3,5-tris(4-ethynylphenyl)benzene, 1,3,5-triethynyl-2,4,6-trifluorobenzene, and tetra(4-ethynylphenyl)methane as comonomers following Suzuki-Miyaura and Sonogashira-Hagihara carbon-carbon coupling approaches. The obtained CBPPs show high thermal stability, a good specific surface area, and a robust framework and can be applied successfully in the fluorescence recognition of enantiomers of terpenes (limonene and α-pinene) and 1-phenylethylamine. Fluorescence titration of CBPPs-OH in acetonitrile shows that all Sonogashira hosts exhibit a preference for the (R)-enantiomer over the (S)-enantiomer of 1-phenylethylamine, the selectivity being much higher than that of the corresponding BINOL-based soluble system used as a reference. However, the Suzuki host reveals a preference toward (S)-phenylethylamine. Regarding the sensing of terpenes, only Sonogashira hosts show enantiodifferentiation with an almost total preference for the (S)-enantiomer of limonene and α-pinene. Based on the computational simulations and the experimental data, with 1-phenylethylamine as the analyte, chiral recognition is due to the distinctive binding affinities resulting from N···H-O hydrogen bonds and the π-π interaction between the host and the guest. However, for limonene, the geometry of the adsorption complex is mostly governed by the interaction between the hydroxyl group of the BINOL unit and the C═C bond of the iso-propenyl fragment. The synthetic strategy used to prepare CBPPs opens many possibilities to place chiral centers such as BINOL in porous polymers for different chiral applications such as enantiomer recognition.

2.
Angew Chem Int Ed Engl ; 61(37): e202209335, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-35841537

RESUMO

Bismuth metal-organic frameworks (MOFs) as heterogeneous catalysts are scarce, and there is little knowledge on the influence of the MOF features on their resulting activity and behavior. Here, we present the synthesis, characterization, and catalytic activity in the one-pot multicomponent Strecker reaction with ketones of three new MOFs prepared with the combination of indium or bismuth and 4,4',4'',4'''-methanetetrayltetrabenzoic acid. One of them, denoted BiPF-7, is very robust and chemically stable, and demonstrates a high activity in the formation of the desired α-aminonitriles. The interaction of the catalytic substrates with the metal centers in this MOF has been crystallographically characterized, showcasing a concerted framework adaptability process that involves structural changes in framework components that are not directly involved in the binding of the guests.

3.
Int J Mol Sci ; 21(12)2020 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-32575438

RESUMO

The design of improved organic linkers for the further engineering of smarter metal-organic framework (MOF) materials has become a paramount task for a wide number of material scientists. In this report, a luminescent double-functionalized push-pull (electron donor-acceptor) archetype organic molecule, dimethyl 4-amino-8-cyanonaphthalene-2,6-dicarboxylate (Me2CANADC), has been synthesized and characterized. The optical steady-state properties of Me2CANADC are strongly influenced by the surrounding environment as a direct consequence of its strong charge transfer (CT) character. The relaxation from its first electronically excited singlet state follows a double pathway: (1) on one side deactivating from its local excited (LE) state in the sub-picosecond or picosecond time domain, and (2) on the other side undergoing an ultrafast intramolecular charge transfer (ICT) reaction that is slowing down in viscous solvents. The deactivation to the ground state of these species with CT character is the origin of the Me2CANADC luminescence, and they present solvent-dependent lifetime values ranging from 8 to 18 ns. The slow photodynamics of Me2CANADC unveils the coexistence of a non-emissive triplet excited state and the formation of a long-lived charge separated state (2 µs). These observations highlight the promising optical properties of Me2CANADC linker, opening a window for the design of new functional MOFs with huge potential to be applied in the fields of luminescent sensing and optoelectronics.


Assuntos
Naftalenos/síntese química , Luminescência , Estrutura Molecular , Naftalenos/química , Processos Fotoquímicos , Solventes , Tempo
4.
ACS Appl Mater Interfaces ; 12(13): 15108-15114, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32138517

RESUMO

This paper reports a simple approach for the preparation of new photo-active conjugated porous polymers (CPPs) based on phenanthrene building blocks with a high Brunauer-Emmett-Teller (BET) surface area. Starting from 2,7-diiodophenanthrene-9,10-dione and its bis-dioxolane derivative with different alkynyl comonomers, we prepared a series of CPPs by C-C Sonogashira-Hagihara coupling activated by microwaves. Moreover, we demonstrated that these functionalized CPPs after hydrolysis to the corresponding diketones show much higher BET surface areas than those obtained directly from the phenanthrene-9,10-dione monomer. Reaction of diketone-hydrolyzed polymers with 2,4-difluoro-6-hydroxybenzaldehyde yields phenantroimidazole derivatives. Indeed, these structurally robust polymers result in efficient, recyclable, heterogeneous photo-organocatalysts for the aza-Henry reaction (C-H functionalization) induced by visible-light irradiation.

5.
ACS Omega ; 3(10): 12593-12599, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30411012

RESUMO

Supercritical fluids technology is a clean methodology to foam polymeric materials. However, this technique provides only the formation of inner porosity, whereas the so-called skin layer is commonly observed at the polymer surface. This article describes a new method for the preparation of outer and inner porous poly(ε-caprolactone) (PCL) scaffolds by combination of supercritical CO2 (SCCO2) foaming and the breath figures technique. In the first step, experiments with a SCCO2 reactor were performed at 35-45 °C, 100-250 bar, and 1-20 min depressurization time. The effect of these parameters in the formation of inner porosity was investigated for an adequate optimization. In a late stage, to provide also surface porosity to the polymeric samples and remove the skin layer, the breath figures technique was employed. The evaluation of porosity was determined by scanning electronic microscopy, mercury porosimetry, and micro X-ray computerized tomography scanning processing the images obtained with the ImageJ software. The results of this study using these two complementary techniques showed the existence of interconnectivity between inner and outer porosity of the samples. Furthermore, thermal transitions and crystallinity of the PCL samples have been analyzed by differential scanning calorimetry. Finally, a preliminary biological evaluation of the resulting scaffolds with mouse endothelial cells (C166-GFP) was performed to assess their biocompatibility and cellular viability.

6.
Chemistry ; 20(17): 5111-20, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24623578

RESUMO

Starting from mononitrotetrakis(iodophenyl)methane as monomer, we report the preparation of the first pre-functionalised porous aromatic frameworks (PAFs) and their application as supports for organometallic catalysts. Neutral coordinate imino-pyridine Schiff base (PAF-NPy) or chiral bis-amino (PAF-NPro) ligands were obtained by post-synthetic treatment of PAF-NH2 and treated with copper(I) or rhodium(I) to yield the corresponding supported transition-metal catalysts. The as-prepared PAF-NN-M catalysts exhibited activity and selectivity similar to that of the corresponding homogeneous catalysts and were easily removed from reaction media and recycled without loss of activity or selectivity.

7.
Chem Res Toxicol ; 24(3): 321-8, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21319830

RESUMO

Pyridoxamine (PM) is an effective inhibitor of the formation of the carcinogen acrylamide (AA) from its precursors in low-moisture model systems. Although AA is widely assumed to act by scavenging carbonyl compounds, no alternative pathways have to date been explored. In this work, we found AA to directly react with PM in a low-moisture acrylamide-pyridoxamine model system heated at 140 °C for up to 40 min. The reaction products gave four major chromatographic peaks that were assigned to acrylamide-pyridoxamine adducts. Two of the adducts (AA-PM-1 and AA-PM-3) were selected for isolation and structural characterization with various spectroscopic (UV, fluorescence, IR, and NMR) and mass spectrometric techniques (MS, MS/MS). As shown by the proposed reaction scheme, PM can directly react with AA via Michael addition. The reaction involves a nucleophilic attack of the PM amine group on AA (an α,ß-unsaturated carbonyl compound) to give adduct AA-PM-3, which was identified as 3-(((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methyl)amino)propanamide. However, AA-PM-3 further reacts with any additional AA present in the medium to give adduct AA-PM-1 identified as 3,3'-(((3-hydroxy-5-(hydroxymethyl)-2-methylpyridin-4-yl)methyl)azanediyl)dipropanamide. The time courses of these adduct formation reactions were studied in cookies supplemented with PM, where AA-PM-3 was found to be the predominant structure.


Assuntos
Acrilamida/química , Piridoxamina/análogos & derivados , beta-Alanina/análogos & derivados , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Piridoxamina/química , Piridoxamina/isolamento & purificação , Espectrofotometria Infravermelho , beta-Alanina/química , beta-Alanina/isolamento & purificação
8.
J Phys Chem B ; 113(31): 10611-8, 2009 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-19591505

RESUMO

We report on tunable, highly efficient and photostable solid-state dye laser emitting around 640 nm based on Rhodamine 640 incorporated into homopolymers, linear and cross-linked copolymers, and silicon-modified organic matrices. The effect on the lasing properties of both dye concentration and environmental conditions was analyzed. Under transversal pumping at 532 nm with 5.5 mJ/pulse, high-lasing efficiencies of up to 42% were recorded. The laser operation was highly stable with a drop in the laser output of approximately 20% after 100 000 pump pulses at the same position of the sample at 10 Hz repetition rate. To the best of our knowledge, these results are the topmost achieved to date for organic, inorganic, and hybrid materials doped with rhodamine 640. When the samples were incorporated into a grazing-incidence grating oscillator, narrow-line-width operation with tunning ranges of up to 40 nm was obtained.


Assuntos
Corantes Fluorescentes/química , Polímeros/química , Rodaminas/química , Lasers , Modelos Moleculares , Fotoquímica
9.
Org Lett ; 9(21): 4183-6, 2007 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17880095

RESUMO

The asymmetrically substituted BODIPY dyes 9a and 9b have been synthesized through a key redox step involving the alpha-nitroso derivative of the starting pyrrol. Both dyes emit fluorescence with quantum yields of ca. 0.7, but only 8b behaves as a good laser dye, with an efficiency of 48% in ethanol solution.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...