Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 655
Filtrar
1.
Eur J Hum Genet ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702431

RESUMO

Numerous large scale genomic studies have uncovered rare but recurrent pathogenetic variants in a significant number of genes encoding epigenetic machinery in cases with neurodevelopmental disorders (NDD) especially autism spectrum disorder (ASD). These findings provide strong support for the functional importance of epigenetic regulators in neurodevelopment. After the clinical genomics evaluation of the patients using exome sequencing, we have identified, three novel protein-truncating variants (PTVs) in the MSL2 gene (OMIM: 614802) which encodes a chromatin modifying enzyme. MSL2 modifies chromatin through both mono-ubiquitination of histone 2B on lysine 34 (K34) and acetylation of histone H4 on lysine 16 (K16). We reported first time the detailed clinical features associated with 3 MSL2 PTVs. There are 15 PTVs (13 de novo) reported from the large genomics studies (12 cases) or ClinVar (3 cases) of NDD, ASD, and developmental disorders (DD) but the specific clinical features for these cases are not described. Taken together, our descriptions of dysmorphic face and other features support the causal role of MSL2 in a likely syndromic neurodevelopmental disorder and add MSL2 to a growing list of epigenetic genes implicated in ASD.

2.
Genet Mol Biol ; 47(1): e20220335, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38593426

RESUMO

Massive sequencing platforms allow the identification of complex clinical phenotypes involving more than one autosomal recessive disorder. In this study, we report on an adult patient, born to a related couple (third degree cousins), referred for genetic evaluation due to ectopia lentis, deafness and previous diagnosis of juvenile idiopathic arthritis. He was biochemically diagnosed as having Classic Homocystinuria (HCU); Sanger sequencing of the CBS gene showed the genotype NM_000071.2(CBS):c.[833T>C];[833T>C], compatible with the diagnosis of pyridoxine-responsive HCU. As he also had symptoms not usually associated with HCU, exome sequencing was performed. In addition to the variants found in the Sanger sequencing, the following variants were identified: NM_001256317.1(TMPRSS3):c.[413C>A];[413C>A]; and the NM_005807.6(PRG4):c.[3756dup]:[3756dup], confirming the diagnosis of autosomal recessive nonsyndromic deafness and Camptodactyly-Arthropathy-Coxa Vara-Pericarditis Syndrome (CACP), respectively. Genomic analysis allowed the refinement of the diagnosis of a complex case and improvement of the patient's treatment.

3.
BMC Genomics ; 25(1): 371, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627676

RESUMO

BACKGROUND: X-chromosome inactivation (XCI) is an epigenetic process that occurs during early development in mammalian females by randomly silencing one of two copies of the X chromosome in each cell. The preferential inactivation of either the maternal or paternal copy of the X chromosome in a majority of cells results in a skewed or non-random pattern of X inactivation and is observed in over 25% of adult females. Identifying skewed X inactivation is of clinical significance in patients with suspected rare genetic diseases due to the possibility of biased expression of disease-causing genes present on the active X chromosome. The current clinical test for the detection of skewed XCI relies on the methylation status of the methylation-sensitive restriction enzyme (Hpall) binding site present in proximity of short tandem polymorphic repeats on the androgen receptor (AR) gene. This approach using one locus results in uninformative or inconclusive data for 10-20% of tests. Further, recent studies have shown inconsistency between methylation of the AR locus and the state of inactivation of the X chromosome. Herein, we develop a method for estimating X inactivation status, using exome and transcriptome sequencing data derived from blood in 227 female samples. We built a reference model for evaluation of XCI in 135 females from the GTEx consortium. We tested and validated the model on 11 female individuals with different types of undiagnosed rare genetic disorders who were clinically tested for X-skew using the AR gene assay and compared results to our outlier-based analysis technique. RESULTS: In comparison to the AR clinical test for identification of X inactivation, our method was concordant with the AR method in 9 samples, discordant in 1, and provided a measure of X inactivation in 1 sample with uninformative clinical results. We applied this method on an additional 81 females presenting to the clinic with phenotypes consistent with different hereditary disorders without a known genetic diagnosis. CONCLUSIONS: This study presents the use of transcriptome and exome sequencing data to provide an accurate and complete estimation of X-inactivation and skew status in a cohort of female patients with different types of suspected rare genetic disease.


Assuntos
Exoma , Inativação do Cromossomo X , Adulto , Humanos , Feminino , Transcriptoma , Sequenciamento do Exoma , Cromossomos Humanos X/genética
5.
Lung ; 202(2): 151-156, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38461429

RESUMO

BACKGROUND: Lung biopsy remains the gold standard in the diagnosis of fibrotic interstitial lung disease (F-ILD), but there is a growing appreciation of the role of pathogenic gene variants in telomere and surfactant protein genes, especially in familial pulmonary fibrosis (FPF). Pleuroparenchymal fibroelastosis (PPFE) is a rare disease that can coexist with different patterns of F-ILD, including FPF. It can be progressive and often leads to respiratory failure and death. This study tested the hypothesis that genetic testing goes beyond radiological and histological findings in PPFE and other F-ILD further informing clinical decision-making for patients and affected family members by identifying pathological gene variants in telomere and surfactant protein genes. METHODS: This is a retrospective review of 70 patients with F-ILD in the setting of FPF or premature lung fibrosis. Six out of 70 patients were diagnosed with PPFE based on radiological or histological characteristics. All patients underwent telomere length evaluation in peripheral blood by Flow-FISH or genetic testing using a customized exome-based panel that included telomere and surfactant protein genes associated with lung fibrosis. RESULTS: Herein, we identified six individuals where radiographic or histopathological analyses of PPFE were linked with telomere biology disorders (TBD) or variants in surfactant protein genes. Each case involved individuals with either personal early-onset lung fibrosis or a family history of the disease. Assessments of telomere length and genetic testing offered insights beyond traditional radiological and histopathological evaluations. CONCLUSION: Detecting anomalies in TBD-related or surfactant protein genes can significantly refine the diagnosis and treatment strategies for individuals with PPFE and other F-ILD.


Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/diagnóstico por imagem , Fibrose Pulmonar/genética , Fibrose Pulmonar/complicações , Tomografia Computadorizada por Raios X/métodos , Doenças Pulmonares Intersticiais/diagnóstico , Fibrose , Testes Genéticos , Tensoativos , Pulmão/diagnóstico por imagem , Pulmão/patologia
6.
Hum Genet ; 143(5): 649-666, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38538918

RESUMO

Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.


Assuntos
Genômica , Humanos , Genômica/métodos , Exoma/genética , Sequenciamento do Exoma/métodos , Bases de Dados Genéticas , Testes Genéticos/métodos , Genoma Humano , Sequenciamento Completo do Genoma/métodos , Fenótipo
8.
Genet Mol Biol ; 47(1): e20230285, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38488524

RESUMO

Mucopolysaccharidosis type IIIB (MPS IIIB) is caused by deficiency of alpha-N-acetylglucosaminidase, leading to storage of heparan sulphate. The disease is characterized by intellectual disability and hyperactivity, among other neurological and somatic features. Here we studied retrospective data from a total of 19 MPS IIIB patients from Brazil, aiming to evaluate disease progression. Mean age at diagnosis was 7.2 years. Speech delay was one of the first symptoms to be identified, around 2-3 years of age. Behavioral alterations include hyperactivity and aggressiveness, starting around age four. By the end of the first decade, patients lost acquired abilities such as speech and ability to walk. Furthermore, as disease progresses, respiratory, cardiovascular and joint abnormalities were found in more than 50% of the patients, along with organomegaly. Most common cause of death was respiratory problems. The disease progression was characterized in multiple systems, and hopefully these data will help the design of appropriate clinical trials and clinical management guidelines.

9.
Neurologia (Engl Ed) ; 39(1): 63-83, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38065433

RESUMO

INTRODUCTION: Gamification consists of the use of games in non-playful contexts. It is widely employed in the motor rehabilitation of neurological diseases, but mainly in adult patients. The objective of this review was to describe the use of gamification in the rehabilitation of children and adolescents with neuromotor impairment. METHODS: We performed a systematic review of clinical trials published to date on the MEDLINE (PubMed), Scielo, SCOPUS, Dialnet, CINAHL, and PEDro databases, following the PRISMA protocol. The methodological quality of the studies identified was assessed using the PEDro scale. RESULTS: From a total of 469 studies, 11 clinical trials met the inclusion criteria. We analysed the gamification systems used as part of the rehabilitation treatment of different neuromotor conditions in children and adolescents. Cerebral palsy was the most frequently studied condition (6 studies), followed by developmental coordination disorder (3), neurological gait disorders (1), and neurological impairment of balance and coordination (1). CONCLUSION: The use of gamification in rehabilitation is helpful in the conventional treatment of neuromotor disorders in children and adolescents, with increased motivation and therapeutic adherence being the benefits with the greatest consensus among authors. While strength, balance, functional status, and coordination also appear to improve, future research should aim to determine an optimal dosage.


Assuntos
Paralisia Cerebral , Transtornos dos Movimentos , Reabilitação Neurológica , Criança , Humanos , Adolescente , Gamificação , Marcha
10.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-37580113

RESUMO

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Assuntos
Deficiência Intelectual , Leucoencefalopatias , Humanos , Criança , Corpo Caloso , Fácies , Mutação/genética , Fenótipo , Genótipo , Deficiência Intelectual/genética , Deficiência Intelectual/diagnóstico , Síndrome , Deficiências do Desenvolvimento/patologia , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética
11.
Mol Genet Metab Rep ; 37: 101006, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38053927

RESUMO

Gaucher disease (GD) is an autosomal recessive lysosomal disorder caused by pathogenic variants in GBA1 which result in the deficient activity of glucocerebrosidase (GCase). There are few data on the genetic characterization of Brazilian GD patients. This study aimed at characterizing the genotype of 72 unrelated Brazilian GD patients (type I = 63, type II = 4, type III = 5; male = 31). Forty patients were from South Brazil (SB), and 32 were from other regions of Brazil (Others). The exons and exon/intron junctions of GBA1 were analyzed by Sanger sequencing in 8 patients, or by massive parallel sequencing followed by Sanger of exons 9 and 10 in 64 patients. In total, 31 pathogenic variants were identified. The most frequent allele found was N370S (p.(Asn409Ser)) (41.0%), and the most frequent genotype was N370S/RecNciI p.[Asn409Ser];[Leu483Pro;Ala495Pro;Val499=](23.6%). Three variants (N370S - in exon 9, and RecNciI and L444P (p.(Leu483Pro), in exon 10) correspond to 76.3% of total alleles in SB and 59.4% in Others. Two novel variants were described: c.326del(p.(Gln109Argfs*9)) and c.690G>A (p.(?)). Although sequencing all the exons of GBA1 is the gold-standard method for the genetic analysis of GD patients, a step analysis can be proposed for Brazilian patients, starting with analysis of exons 9 and 10. The N370S allele is the most frequently associated with GD in Brazil.

12.
Eur J Paediatr Neurol ; 47: 72-79, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37788534

RESUMO

OBJECTIVE: To develop a Spanish version of the Rett Syndrome Motor Evaluation Scale (RESMES) for the locomotor function of Rett Syndrome (RTT) using a transcultural methodology. METHODS: The RESMES was cross-culturally adaptated and validated in the Spanish language (RESMES-sp). This study was divided into two well-differentiated phases: 1) a cross-cultural translation and adaptation; 2) psychometric characteristics analysis of the RESMES-sp (reliability, test-retest, construct validity, criteria validity, error measurements). For criteria validity, PAINAD questionnaire, the scoliosis values and PedsQL™, were used. RESULTS: A total of 63 girls and women diagnosed with RTT participated in this validation study. The total value of the RESMES-sp correlates significantly with all its dimensions, with the correlation value oscillating between 0.645 and 0.939. The correlation value with PAINAD ranges between 0.439 and 0.805; the scoliosis values ranges between 0.245 and 0.564; with PedsQOL™ questionnaire, the correlation values range between 0.273 and 0.663 for the PedsQL™ dimensions, and between 0.447 and 0.648 for the total value of PedsQOL™ questionnaire. The reliability values of Crombach's alpha ranged between 0.897 and 0.998 for the intra-observer analyses and between 0.904 and 0.998 for the inter-observer reliability. The SEM showed a value of 2,829, while the MDC90 showed a value of 6601. The Exploratory Factor Analysis showed 6 factors and values of variance of 86.163%. CONCLUSIONS: The Spanish version of the RESMES is a reliable and valid tool for the functional assessment and follow-up of patients with RTT.


Assuntos
Síndrome de Rett , Escoliose , Humanos , Feminino , Comparação Transcultural , Síndrome de Rett/diagnóstico , Escoliose/diagnóstico , Reprodutibilidade dos Testes , Inquéritos e Questionários , Psicometria
13.
Res Sq ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37886596

RESUMO

The pathogenesis of primary sclerosing cholangitis (PSC) is unclear, although studies implicate IL-17A as an inflammatory mediator in this disease. However, a direct assessment of IL-17 signaling in PSC cholangiocytes is lacking. In this study we aimed to investigate the response of PSC extrahepatic cholangiocyte organoids (ECO) to IL-17A stimulation. Cholangiocytes obtained from PSC and non-PSC patients by endoscopic retrograde cholangiography (ERC) were cultured as ECO. The ECO were treated with vehicle or IL-17A and assessed by transcriptomics, secretome analysis, and genome sequencing (GS). Unsupervised clustering of all integrated scRNA-seq data identified 8 cholangiocyte clusters which did not differ between PSC and non-PSC ECO. However, PSC ECO cells demonstrated a robust response to IL-17 treatment, noted by an increased number of differentially expressed genes (DEG) by transcriptomics, and more abundant chemokine and cytokine expression and secretion. After rigorous filtering, GS identified candidate somatic variants shared among PSC ECO from unrelated individuals. However, no candidate rare variants in genes regulating the IL-17 pathway were identified, but rare variants regulating the MAPK signaling pathway were present in all PSC ECO. In conclusion, PSC and non-PSC patient derived ECO respond differently to IL-17 stimulation implicating this pathway in the pathogenesis of PSC.

14.
Mol Genet Metab ; 140(1-2): 107715, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37907381

RESUMO

Accurate determination of the clinical significance of genetic variants is critical to the integration of genomics in medicine. To facilitate this process, the NIH-funded Clinical Genome Resource (ClinGen) has assembled Variant Curation Expert Panels (VCEPs), groups of experts and biocurators which provide gene- and disease- specifications to the American College of Medical Genetics & Genomics and Association for Molecular Pathology's (ACMG/AMP) variation classification guidelines. With the goal of classifying the clinical significance of GAA variants in Pompe disease (Glycogen storage disease, type II), the ClinGen Lysosomal Diseases (LD) VCEP has specified the ACMG/AMP criteria for GAA. Variant classification can play an important role in confirming the diagnosis of Pompe disease as well as in the identification of carriers. Furthermore, since the inclusion of Pompe disease on the Recommended Uniform Screening Panel (RUSP) for newborns in the USA in 2015, the addition of molecular genetic testing has become an important component in the interpretation of newborn screening results, particularly for asymptomatic individuals. To date, the LD VCEP has submitted classifications and supporting data on 243 GAA variants to public databases, specifically ClinVar and the ClinGen Evidence Repository. Here, we describe the ACMG/AMP criteria specification process for GAA, an update of the GAA-specific variant classification guidelines, and comparison of the ClinGen LD VCEP's GAA variant classifications with variant classifications submitted to ClinVar. The LD VCEP has added to the publicly available knowledge on the pathogenicity of variants in GAA by increasing the number of expert-curated GAA variants present in ClinVar, and aids in resolving conflicting classifications and variants of uncertain clinical significance.


Assuntos
Variação Genética , Doença de Depósito de Glicogênio Tipo II , Recém-Nascido , Humanos , Estados Unidos , Testes Genéticos/métodos , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/genética , Genoma Humano , Genômica/métodos
15.
bioRxiv ; 2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37609196

RESUMO

The role of non-coding regulatory elements and how they might contribute to tissue type specificity of disease phenotypes is poorly understood. Autosomal Dominant Leukodystrophy (ADLD) is a fatal, adult-onset, neurological disorder that is characterized by extensive CNS demyelination. Most cases of ADLD are caused by tandem genomic duplications involving the lamin B1 gene ( LMNB1 ) while a small subset are caused by genomic deletions upstream of the gene. Utilizing data from recently identified families that carry LMNB1 gene duplications but do not exhibit demyelination, ADLD patient tissues, CRISPR modified cell lines and mouse models, we have identified a novel silencer element that is lost in ADLD patients and that specifically targets overexpression to oligodendrocytes. This element consists of CTCF binding sites that mediate three-dimensional chromatin looping involving the LMNB1 and the recruitment of the PRC2 repressor complex. Loss of the silencer element in ADLD identifies a previously unknown role for silencer elements in tissue specificity and disease causation.

16.
J Transl Med ; 21(1): 410, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353797

RESUMO

BACKGROUND: In the United States, rare disease (RD) is defined as a condition that affects fewer than 200,000 individuals. Collectively, RD affects an estimated 30 million Americans. A significant portion of RD has an underlying genetic cause; however, this may go undiagnosed. To better serve these patients, the Mayo Clinic Program for Rare and Undiagnosed Diseases (PRaUD) was created under the auspices of the Center for Individualized Medicine (CIM) aiming to integrate genomics into subspecialty practice including targeted genetic testing, research, and education. METHODS: Patients were identified by subspecialty healthcare providers from 11 clinical divisions/departments. Targeted multi-gene panels or custom exome/genome-based panels were utilized. To support the goals of PRaUD, a new clinical service model, the Genetic Testing and Counseling (GTAC) unit, was established to improve access and increase efficiency for genetic test facilitation. The GTAC unit includes genetic counselors, genetic counseling assistants, genetic nurses, and a medical geneticist. Patients receive abbreviated point-of-care genetic counseling and testing through a partnership with subspecialty providers. RESULTS: Implementation of PRaUD began in 2018 and GTAC unit launched in 2020 to support program expansion. Currently, 29 RD clinical indications are included in 11 specialty divisions/departments with over 142 referring providers. To date, 1152 patients have been evaluated with an overall solved or likely solved rate of 17.5% and as high as 66.7% depending on the phenotype. Noteworthy, 42.7% of the solved or likely solved patients underwent changes in medical management and outcome based on genetic test results. CONCLUSION: Implementation of PRaUD and GTAC have enabled subspecialty practices advance expertise in RD where genetic counselors have not historically been embedded in practice. Democratizing access to genetic testing and counseling can broaden the reach of patients with RD and increase the diagnostic yield of such indications leading to better medical management as well as expanding research opportunities.


Assuntos
Doenças Raras , Doenças não Diagnosticadas , Estados Unidos , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Doenças Raras/terapia , Atenção Terciária à Saúde , Medicina Genômica , Testes Genéticos , Aconselhamento Genético
17.
Am J Hum Genet ; 110(6): 989-997, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167966

RESUMO

Statins are a mainstay intervention for cardiovascular disease prevention, yet their use can cause rare severe myopathy. HMG-CoA reductase, an essential enzyme in the mevalonate pathway, is the target of statins. We identified nine individuals from five unrelated families with unexplained limb-girdle like muscular dystrophy and bi-allelic variants in HMGCR via clinical and research exome sequencing. The clinical features resembled other genetic causes of muscular dystrophy with incidental high CPK levels (>1,000 U/L), proximal muscle weakness, variable age of onset, and progression leading to impaired ambulation. Muscle biopsies in most affected individuals showed non-specific dystrophic changes with non-diagnostic immunohistochemistry. Molecular modeling analyses revealed variants to be destabilizing and affecting protein oligomerization. Protein activity studies using three variants (p.Asp623Asn, p.Tyr792Cys, and p.Arg443Gln) identified in affected individuals confirmed decreased enzymatic activity and reduced protein stability. In summary, we showed that individuals with bi-allelic amorphic (i.e., null and/or hypomorphic) variants in HMGCR display phenotypes that resemble non-genetic causes of myopathy involving this reductase. This study expands our knowledge regarding the mechanisms leading to muscular dystrophy through dysregulation of the mevalonate pathway, autoimmune myopathy, and statin-induced myopathy.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Doenças Musculares , Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Ácido Mevalônico , Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Doenças Musculares/genética , Oxirredutases , Hidroximetilglutaril-CoA Redutases/genética , Hidroximetilglutaril-CoA Redutases/efeitos adversos
20.
Cytokine ; 162: 156088, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462220

RESUMO

INTRODUCTION: Hepatic Glycogen Storage Diseases (GSD) are rare genetic disorders in which the gluconeogenesis pathway is impaired. Cytokines control virtually every aspect of physiology and may help to elucidate some unsolved questions about phenotypes presented by GSD patients. METHODS: This was an exploratory study in which 27 GSD patients on treatment (Ia = 16, Ib = 06, III = 02, IXα = 03) and 24 healthy age- and sex-matched subjects had plasma samples tested for a panel of 20 cytokines (G-CSF,GM-CSF, IL-1α,IL-1ß, IL-4, IL-6, IL-8, IL-10, IL-13, IL-17A, GRO, IP-10/CXCL10, MCP-1/CCL2, MIP-1α/CCL3, MIP-1ß/CCL4, MDC/CCL22, IFN-γ, TNF-α, TNF-ß, VEGF) through a multiplex kit and analyzed in comparison to controls and among patients, regarding to clinical features as anemia, hepatic adenocarcinoma and triglyceride levels. RESULTS: Patients (GSD-Ia/III/IX) presented reduced levels of IL-4 (p = 0.040), MIP-1α/CCL3 (p = 0.003), MDC/CCL22 (p < 0.001), TNF-ß (p = 0.045) and VEGF (p = 0.043) compared to controls. When different types of GSD were compared, G-CSF was higher in GSD-Ib than -Ia (p < 0.001) and than -III/IX (p = 0.033) patients; IL-10 was higher in GSD-Ib than in GSD-Ia patients (p = 0.019); and GSD-III/IX patients had increased levels of IP-10/CXCL10 than GSD-Ib patients (p = 0.019). When GSD-I patients were gathered into the same group and compared with GSD-III/IX patients, IP10/CXCL10 and MCP-1 were higher in the latter group (p = 0.005 and p = 0.013, respectively). GSD-I patients with anemia presented higher levels of IL-4 and MIP-1α in comparison with patients who had not. Triglyceride level was correlated with neutrophil count and MDC levels on GSD-Ia patients without HCA. CONCLUSION: Altogether, altered levels of cytokines in GSD-I patients reflect an imbalance in immunoregulation process. This study also indicates that neutrophils and some cytokines are affected by triglyceride levels, and future studies on the theme should consider this variable.


Assuntos
Doença de Depósito de Glicogênio Tipo I , Interleucina-10 , Humanos , Quimiocina CCL3 , Quimiocina CXCL10 , Interleucina-4 , Linfotoxina-alfa , Fator A de Crescimento do Endotélio Vascular , Citocinas , Doença de Depósito de Glicogênio Tipo I/patologia , Fator Estimulador de Colônias de Granulócitos , Triglicerídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...