Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 9: 2253, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333827

RESUMO

Salivarian trypanosomes are single cell extracellular parasites that cause infections in a wide range of hosts. Most pathogenic infections worldwide are caused by one of four major species of trypanosomes including (i) Trypanosoma brucei and the human infective subspecies T. b. gambiense and T. b. rhodesiense, (ii) Trypanosoma evansi and T. equiperdum, (iii) Trypanosoma congolense and (iv) Trypanosoma vivax. Infections with these parasites are marked by excessive immune dysfunction and immunopathology, both related to prolonged inflammatory host immune responses. Here we review the classification and global distribution of these parasites, highlight the adaptation of human infective trypanosomes that allow them to survive innate defense molecules unique to man, gorilla, and baboon serum and refer to the discovery of sexual reproduction of trypanosomes in the tsetse vector. With respect to the immunology of mammalian host-parasite interactions, the review highlights recent findings with respect to the B cell destruction capacity of trypanosomes and the role of T cells in the governance of infection control. Understanding infection-associated dysfunction and regulation of both these immune compartments is crucial to explain the continued failures of anti-trypanosome vaccine developments as well as the lack of any field-applicable vaccine based anti-trypanosomosis intervention strategy. Finally, the link between infection-associated inflammation and trypanosomosis induced anemia is covered in the context of both livestock and human infections.


Assuntos
Interações Hospedeiro-Parasita/imunologia , Insetos Vetores , Glândulas Salivares , Trypanosoma/fisiologia , Tripanossomíase , Moscas Tsé-Tsé , Animais , Humanos , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Glândulas Salivares/imunologia , Glândulas Salivares/parasitologia , Tripanossomíase/imunologia , Tripanossomíase/patologia , Tripanossomíase/transmissão , Moscas Tsé-Tsé/imunologia , Moscas Tsé-Tsé/parasitologia
2.
Toxins (Basel) ; 10(3)2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29494518

RESUMO

BACKGROUND: Shiga toxin-producing Escherichia coli (STEC) are a subset of pathogens leading to illnesses such as diarrhea, hemolytic uremic syndrome and even death. The Shiga toxins are the main virulence factors and divided in two groups: Stx1 and Stx2, of which the latter is more frequently associated with severe pathologies in humans. RESULTS: An immune library of nanobodies (Nbs) was constructed after immunizing an alpaca with recombinant Shiga toxin-2a B subunit (rStx2aB), to retrieve multiple rStx2aB-specific Nbs. The specificity of five Nbs towards rStx2aB was confirmed in ELISA and Western blot. Nb113 had the highest affinity (9.6 nM) and its bivalent construct exhibited a 100-fold higher functional affinity. The structure of the Nb113 in complex with rStx2aB was determined via X-ray crystallography. The crystal structure of the Nb113-rStx2aB complex revealed that five copies of Nb113 bind to the rStx2aB pentamer and that the Nb113 epitope overlaps with the Gb3 binding site, thereby providing a structural basis for the neutralization of Stx2a by Nb113 that was observed on Vero cells. Finally, the tandem-repeated, bivalent Nb1132 exhibits a higher toxin neutralization capacity compared to monovalent Nb113. CONCLUSIONS: The Nb of highest affinity for rStx2aB is also the best Stx2a and Stx2c toxin neutralizing Nb, especially in a bivalent format. This lead Nb neutralizes Stx2a by competing for the Gb3 receptor. The fusion of the bivalent Nb1132 with a serum albumin specific Nb is expected to combine high toxin neutralization potential with prolonged blood circulation.


Assuntos
Anticorpos Neutralizantes , Proteínas Recombinantes , Toxina Shiga II , Anticorpos de Domínio Único , Animais , Anticorpos Neutralizantes/química , Anticorpos Neutralizantes/fisiologia , Camelídeos Americanos/imunologia , Chlorocebus aethiops , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/metabolismo , Toxina Shiga II/química , Toxina Shiga II/genética , Toxina Shiga II/imunologia , Toxina Shiga II/metabolismo , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/fisiologia , Células Vero
3.
PLoS Negl Trop Dis ; 11(9): e0005932, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28915239

RESUMO

BACKGROUND: Animal African trypanosomosis (AAT) is a neglected tropical disease which imposes a heavy burden on the livestock industry in Sub-Saharan Africa. Its causative agents are Trypanosoma parasites, with T. congolense and T. vivax being responsible for the majority of the cases. Recently, we identified a Nanobody (Nb474) that was employed to develop a homologous sandwich ELISA targeting T. congolense fructose-1,6-bisphosphate aldolase (TcoALD). Despite the high sequence identity between trypanosomatid aldolases, the Nb474-based immunoassay is highly specific for T. congolense detection. The results presented in this paper yield insights into the molecular principles underlying the assay's high specificity. METHODOLOGY/PRINCIPAL FINDINGS: The structure of the Nb474-TcoALD complex was determined via X-ray crystallography. Together with analytical gel filtration, the structure reveals that a single TcoALD tetramer contains four binding sites for Nb474. Through a comparison with the crystal structures of two other trypanosomatid aldolases, TcoALD residues Ala77 and Leu106 were identified as hot spots for specificity. Via ELISA and surface plasmon resonance (SPR), we demonstrate that mutation of these residues does not abolish TcoALD recognition by Nb474, but does lead to a lack of detection in the Nb474-based homologous sandwich immunoassay. CONCLUSIONS/SIGNIFICANCE: The results show that the high specificity of the Nb474-based immunoassay is not determined by the initial recognition event between Nb474 and TcoALD, but rather by its homologous sandwich design. This (i) provides insights into the optimal set-up of the assay, (ii) may be of great significance for field applications as it could explain the potential detection escape of certain T. congolense strains, and (iii) may be of general interest to those developing similar assays.


Assuntos
Frutose-Bifosfato Aldolase/análise , Imunoensaio , Trypanosoma congolense/enzimologia , Trypanosoma congolense/imunologia , Tripanossomíase Africana/veterinária , Tripanossomíase Bovina/diagnóstico , África Subsaariana/epidemiologia , Animais , Antígenos de Protozoários/análise , Antígenos de Protozoários/imunologia , Bovinos , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Frutose-Bifosfato Aldolase/química , Frutose-Bifosfato Aldolase/genética , Frutose-Bifosfato Aldolase/imunologia , Mutagênese Sítio-Dirigida , Sensibilidade e Especificidade , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Trypanosoma congolense/química , Tripanossomíase Africana/diagnóstico , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia
4.
PLoS One ; 7(5): e36133, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22675421

RESUMO

BACKGROUND: The Senepol cattle breed (SEN) was created in the early XX(th) century from a presumed cross between a European (EUT) breed (Red Poll) and a West African taurine (AFT) breed (N'Dama). Well adapted to tropical conditions, it is also believed trypanotolerant according to its putative AFT ancestry. However, such origins needed to be verified to define relevant husbandry practices and the genetic background underlying such adaptation needed to be characterized. METHODOLOGY/PRINCIPAL FINDINGS: We genotyped 153 SEN individuals on 47,365 SNPs and combined the resulting data with those available on 18 other populations representative of EUT, AFT and Zebu (ZEB) cattle. We found on average 89% EUT, 10.4% ZEB and 0.6% AFT ancestries in the SEN genome. We further looked for footprints of recent selection using standard tests based on the extent of haplotype homozygosity. We underlined i) three footprints on chromosome (BTA) 01, two of which are within or close to the polled locus underlying the absence of horns and ii) one footprint on BTA20 within the slick hair coat locus, involved in thermotolerance. Annotation of these regions allowed us to propose three candidate genes to explain the observed signals (TIAM1, GRIK1 and RAI14). CONCLUSIONS/SIGNIFICANCE: Our results do not support the accepted concept about the AFT origin of SEN breed. Initial AFT ancestry (if any) might have been counter-selected in early generations due to breeding objectives oriented in particular toward meat production and hornless phenotype. Therefore, SEN animals are likely susceptible to African trypanosomes which questions the importation of SEN within the West African tsetse belt, as promoted by some breeding societies. Besides, our results revealed that SEN breed is predominantly a EUT breed well adapted to tropical conditions and confirmed the importance in thermotolerance of the slick locus.


Assuntos
Aclimatação , Cruzamento , Bovinos/genética , Loci Gênicos , Clima Tropical , Animais , Cromossomos de Mamíferos , Análise por Conglomerados , Genoma , Genótipo , Polimorfismo de Nucleotídeo Único , Seleção Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...