Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702962

RESUMO

The growing demand for biological therapeutics has increased interest in large-volume perfusion bioreactors, but the operation and scalability of perfusion membranes remain a challenge. This study evaluates perfusion cell culture performance and monoclonal antibody (mAb) productivity at various membrane fluxes (1.5-5 LMH), utilizing polyvinylidene difluoride (PVDF), polyethersulfone (PES), or polysulfone (PS) membranes in tangential flow filtration mode. At low flux, culture with PVDF membrane maintained higher cell culture growth, permeate titer (1.06-1.34 g/L) and sieving coefficients (≥83%) but showed lower permeate volumetric throughput and higher transmembrane pressure (TMP) (>1.50 psi) in the later part of the run compared to cultures with PES and PS membrane. However, as permeate flux increased, the total mass of product decreased by around 30% for cultures with PVDF membrane, while it remained consistent with PES and PS membrane, and at the highest flux studied, PES membrane generated 12% more product than PVDF membrane. This highlights that membrane selection for large-volume perfusion bioreactors depends on the productivity and permeate flux required. Since operating large-volume perfusion bioreactors at low flux would require several cell retention devices and a complex setup, PVDF membranes are suitable for low-volume operations at low fluxes whereas PES membranes can be a desirable alternative for large-volume higher demand products at higher fluxes.

2.
N Biotechnol ; 72: 122-127, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36368463

RESUMO

Biologics encompasses a wide variety of therapeutics including monoclonal antibodies, fusion proteins, and enzymes, among others. The biologics market is growing at a rapid pace and different manufacturing processes, including continuous manufacturing processes, are being increasingly adopted. There is a strong drive to assess the sustainability of such processes. Here, we calculated the process mass intensity (PMI) of a continuous manufacturing process and compared it to the PMI of batch processes for monoclonal antibodies (mAbs). Results show that the PMI of continuous manufacturing process is comparable to that of batch processes. Sensitivity analysis was performed to assess the impact of different process strategies on the material usage efficiency of continuous processes. Although PMI is a useful benchmarking metric of sustainability, it does not account for factors such as energy consumption which is a key driver of sustainability for biologics manufacturing. Comparison of a higher PMI continuous process with a lower PMI batch process operating at the same bioreactor scale shows that since the productivity (in g of drug substance, DS) per unit time is multifold higher for the continuous process, the overall energy consumption per unit of DS produced might be lower leading to a more environmentally sustainable process. This study highlights some of these key aspects that would require additional metrics and models to be developed to assess the overall sustainability of biologics processes.


Assuntos
Produtos Biológicos , Reatores Biológicos , Anticorpos Monoclonais
3.
Biotechnol Prog ; 37(5): e3187, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34164947

RESUMO

Protein concentration determination is a necessary in-process control for the downstream operations within biomanufacturing. As production transitions from batch mode to an integrated continuous bioprocess paradigm, there is a growing need to move protein concentration quantitation from off-line to in-line analysis. One solution to fulfill this process analytical technology need is an in-line index of refraction (IoR) sensor to measure protein concentration in real time. Here the performance of an IoR sensor is evaluated through a series of experiments to assess linear response, buffer matrix effects, dynamic range, sensor-to-sensor variability, and the limits of detection and quantitation. The performance of the sensor was also tested in two bioprocessing scenarios, ultrafiltration and capture chromatography. The implementation of this in-line IoR sensor for real-time protein concentration analysis and monitoring has the potential to improve continuous bioprocess manufacturing.


Assuntos
Anticorpos Monoclonais/análise , Reatores Biológicos , Proteínas Recombinantes/análise , Refratometria/métodos , Animais , Células CHO , Cromatografia , Cricetinae , Cricetulus , Humanos , Ultrafiltração
4.
Biotechnol Bioeng ; 117(11): 3336-3344, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32667680

RESUMO

Although several compelling benefits for bioprocess intensification have been reported, the need for a streamlined integration of perfusion cultures with capture chromatography still remains unmet. Here, a robust solution is established by conducting tangential flow filtration-based perfusion with a wide-surface pore microfiltration membrane. The resulting integrated continuous bioprocess demonstrated negligible retention of antibody, DNA, and host cell proteins in the bioreactor with average sieving coefficients of 98 ± 1%, 124 ± 28%, and 109 ± 27%, respectively. Further discussion regarding the potential membrane fouling mechanisms is also provided by comparing two membranes with different surface pore structures and the same hollow fiber length, total membrane area, and chemistry. A cake-growth profile is reported for the narrower surface pore, 0.65-µm nominal retention perfusion membrane with final antibody sieving coefficients ≤70%. Whereas the sieving coefficient remained ≥85% during 40 culture days for the wide-surface pore, 0.2-µm nominal retention rating membrane. The wide-surface pore structure, confirmed by scanning electron microscopy imaging, minimizes the formation of biomass deposits on the membrane surface and drastically improves product sieving. This study not only offers a robust alternative for integrated continuous bioprocess by eliminating additional filtration steps while overcoming sieving decay, but also provides insight into membranes' fouling mechanism.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/métodos , Cromatografia/métodos , Filtração/métodos , Membranas Artificiais , Animais , Anticorpos Monoclonais/metabolismo , Incrustação Biológica , Células CHO , Cricetulus , DNA/química , Porosidade , Proteínas Recombinantes/metabolismo , Propriedades de Superfície
5.
Biotechnol Bioeng ; 117(3): 646-653, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31784975

RESUMO

Continuous countercurrent tangential chromatography (CCTC) enables steady-state continuous bioprocessing with low-pressure operation and high productivity. CCTC has been applied to initial capture of monoclonal antibodies (mAb) from clarified cell culture harvest and postcapture polishing of mAb; however, these studies were performed with commercial chromatography resins designed for conventional column chromatography. In this study, a small particle size prototype agarose resin (20-25 µm) with lower cross-linking was co-developed with industrial partner Purolite and tested with CCTC. Due to increased binding capacity and faster kinetics, the resulting CCTC process showed more than a 2X increase in productivity, and a 2X reduction in buffer consumption over commercial protein A resins used in previous CCTC studies, as well as more than a 10X productivity increase versus conventional column operation. Single-pass tangential flow filtration was integrated with the CCTC system, enabling simple control of eluate concentration. A scale-up exercise was conducted to provide a quantitative comparison of CCTC and batch column chromatography. These results clearly demonstrate opportunities for using otherwise unpackable soft small particle size resins with CCTC as the core of a continuous bioprocessing platform.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Reatores Biológicos , Distribuição Contracorrente/métodos , Proteína Estafilocócica A , Animais , Células CHO , Cricetinae , Cricetulus , Proteína Estafilocócica A/química , Proteína Estafilocócica A/metabolismo
6.
Biotechnol Bioeng ; 117(1): 117-124, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31612989

RESUMO

Bioprocess intensification can be achieved through high cell density perfusion cell culture with continuous protein capture integration. Protein passage and cell retention are commonly accomplished using tangential flow filtration systems consisting of microporous membranes. Significant challenges, including low efficiency and decaying product sieving over time, are commonly observed in these cell retention devices. Here, we demonstrate that a macroporous membrane overcomes the product sieving challenges when comparing to several other membrane chemistries and pore sizes within the microporous range. This way, variable chromatography column loading is avoided. The macroporous membrane yielded a 13,000 L/m2 volumetric throughput. The membrane's cut-off size results in an increased permeate turbidity due to particles passage, such as cell debris, through pores ranging from 1 to 4 µm. In addition, successful chromatography column plugging mitigation was achieved by employing depth filtration before the chromatographic step. Depth filtration volumetric throughputs were between 600 and 1,000 L/m2 . Combing a macroporous cell retention device with a depth filter not only provided an alternative to address the challenge of undesired long protein residence times in the bioreactor due to product sieving decay, but also exhibited a throughput increase, making the integration of multicolumn capture chromatography with a perfusion cell culture a more robust process.


Assuntos
Reatores Biológicos , Técnicas de Cultura de Células/instrumentação , Filtração/instrumentação , Membranas Artificiais , Animais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/metabolismo , Células CHO , Técnicas de Cultura de Células/métodos , Cromatografia Líquida , Cricetinae , Cricetulus , Desenho de Equipamento
7.
Anal Chem ; 89(21): 11357-11365, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28981255

RESUMO

Combining process analytical technology (PAT) with continuous production provides a powerful tool to observe and control monoclonal antibody (mAb) fermentation and purification processes. This work demonstrates on-line liquid chromatography (on-line LC) as a PAT tool for monitoring a continuous biologics process and forced degradation studies. Specifically, this work focused on ion exchange chromatography (IEX), which is a critical separation technique to detect charge variants. Product-related impurities, including charge variants, that impact function are classified as critical quality attributes (CQAs). First, we confirmed no significant differences were observed in the charge heterogeneity profile of a mAb through both at-line and on-line sampling and that the on-line method has the ability to rapidly detect changes in protein quality over time. The robustness and versatility of the PAT methods were tested by sampling from two purification locations in a continuous mAb process. The PAT IEX methods used with on-line LC were a weak cation exchange (WCX) separation and a newly developed shorter strong cation exchange (SCX) assay. Both methods provided similar results with the distribution of percent acidic, main, and basic species remaining unchanged over a 2 week period. Second, a forced degradation study showed an increase in acidic species and a decrease in basic species when sampled on-line over 7 days. These applications further strengthen the use of on-line LC to monitor CQAs of a mAb continuously with various PAT IEX analytical methods. Implementation of on-line IEX will enable faster decision making during process development and could potentially be applied to control in biomanufacturing.


Assuntos
Anticorpos Monoclonais/biossíntese , Anticorpos Monoclonais/isolamento & purificação , Reatores Biológicos , Cromatografia por Troca Iônica/métodos , Animais , Anticorpos Monoclonais/química , Soluções Tampão , Células CHO , Cromatografia por Troca Iônica/instrumentação , Cricetulus , Concentração de Íons de Hidrogênio
8.
Biotechnol Bioeng ; 114(1): 154-162, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27425244

RESUMO

Purification processes for monoclonal Immunoglobulin G (IgG) typically employ protein A chromatography as a capture step to remove most of the impurities. One major concern of the post-protein A chromatography processes is the co-elution of some of the host cell proteins (HCPs) with IgG in the capture step. In this work, a novel method for IgG elution in protein A chromatography that reduces the co-elution of HCPs is presented where a two-step pH gradient is self-formed inside a protein A chromatography column. The complexities involved in using an internally produced pH gradient in a protein A chromatography column employing adsorbed buffering species are discussed though equation-based modeling. Under the conditions employed, ELISA assays show a 60% reduction in the HCPs co-eluting with the IgG fraction when using the method as compared to conventional protein A elution without affecting the IgG yield. Evidence is also obtained which indicates that the amount of leached protein A present in free solution in the purified product is reduced by the new method. Biotechnol. Bioeng. 2017;114: 154-162. © 2016 Wiley Periodicals, Inc.


Assuntos
Anticorpos Monoclonais/isolamento & purificação , Cromatografia de Afinidade/métodos , Imunoglobulina G/isolamento & purificação , Proteína Estafilocócica A/metabolismo , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/metabolismo , Linhagem Celular , Contaminação de Medicamentos/prevenção & controle , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Camundongos , Modelos Moleculares , Proteínas/química , Proteína Estafilocócica A/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...