Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Plant Biol ; 78: 102527, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38484440

RESUMO

Cell size affects many processes, including exchange of nutrients and external signals, cell division and tissue mechanics. Across eukaryotes, cells have evolved mechanisms that assess their own size to inform processes such as cell cycle progression or gene expression. Here, we review recent progress in understanding plant cell size regulation and its implications, relating these findings to work in other eukaryotes. Highlights include use of DNA contents as reference point to control the cell cycle in shoot meristems, a size-dependent cell fate decision during stomatal development and insights into the interconnection between ploidy, cell size and cell wall mechanics.


Assuntos
Células Vegetais , Plantas , Ciclo Celular/genética , Divisão Celular , Diferenciação Celular/genética , Plantas/genética , Ploidias , Tamanho Celular , Regulação da Expressão Gênica de Plantas/genética
2.
J Exp Bot ; 72(2): 320-340, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-32939545

RESUMO

Eukaryotic cells rely on the accuracy and efficiency of vesicular traffic. In plants, disturbances in vesicular trafficking are well studied in quickly dividing root meristem cells or polar growing root hairs and pollen tubes. The development of the female gametophyte, a unique haploid reproductive structure located in the ovule, has received far less attention in studies of vesicular transport. Key molecules providing the specificity of vesicle formation and its subsequent recognition and fusion with the acceptor membrane are Rab proteins. Rabs are anchored to membranes by covalently linked geranylgeranyl group(s) that are added by the Rab geranylgeranyl transferase (RGT) enzyme. Here we show that Arabidopsis plants carrying mutations in the gene encoding the ß-subunit of RGT (rgtb1) exhibit severely disrupted female gametogenesis and this effect is of sporophytic origin. Mutations in rgtb1 lead to internalization of the PIN1 and PIN3 proteins from the basal membranes to vesicles in provascular cells of the funiculus. Decreased transport of auxin out of the ovule is accompanied by auxin accumulation in tissue surrounding the growing gametophyte. In addition, female gametophyte development arrests at the uni- or binuclear stage in a significant portion of the rgtb1 ovules. These observations suggest that communication between the sporophyte and the developing female gametophyte relies on Rab-dependent vesicular traffic of the PIN1 and PIN3 transporters and auxin efflux out of the ovule.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácidos Indolacéticos , Óvulo Vegetal/genética , Tubo Polínico
3.
Development ; 147(23)2020 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-33158925

RESUMO

In higher plants, the female germline is formed from the megaspore mother cell (MMC), a single cell in the premeiotic ovule. Previously, it was reported that mutants in the RNA-dependent DNA methylation (RdDM) pathway might be involved in restricting the female germline to a single nucellus cell. We show that the DRM methyltransferase double mutant drm1drm2 also presents ectopic enlarged cells, consistent with supernumerary MMC-like cells. In wild-type ovules, MMC differentiation requires SPOROCYTELESS/NOZZLE (SPL/NZZ), as demonstrated by the spl/nzz mutant failing to develop an MMC. We address the poorly understood upstream regulation of SPL/NZZ in ovules, showing that the RdDM pathway is important to restrict SPL/NZZ expression. In ago9, rdr6 and drm1drm2 mutants, SPL/NZZ is expressed ectopically, suggesting that the multiple MMC-like cells observed might be attributable to the ectopic expression of SPL/NZZ. We show that the ovule identity gene, SEEDSTICK, directly regulates AGO9 and RDR6 expression in the ovule and therefore indirectly regulates SPL/NZZ expression. A model is presented describing the network required to restrict SPL/NZZ expression to specify a single MMC.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Metilação de DNA/genética , Proteínas de Domínio MADS/genética , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas Argonautas/genética , Regulação da Expressão Gênica de Plantas/genética , Células Germinativas/crescimento & desenvolvimento , Células Germinativas/metabolismo , Metiltransferases/genética , Mutação/genética , Óvulo Vegetal/genética , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , RNA/genética , RNA Polimerase Dependente de RNA/genética , Células-Tronco/citologia
4.
Trends Plant Sci ; 24(5): 455-467, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30850278

RESUMO

The Arabidopsis thaliana ovule arises as a female reproductive organ composed solely of somatic diploid cells. Among them, one cell will acquire a unique identity and initiate female germline development. In this review we explore the complex network that facilitates differentiation of this single cell, and consider how it becomes committed to a distinct developmental program. We highlight recent progress towards understanding the role of intercellular communication, cell competency, and cell-cycle regulation in the ovule primordium, and we discuss the possibility that distinct pathways restrict germline development at different stages. Importantly, these recent findings suggest a renaissance in plant ovule research, restoring the female germline as an attractive model to study cell communication and cell fate establishment in multicellular organs.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Feminino , Regulação da Expressão Gênica de Plantas , Células Germinativas , Óvulo Vegetal
5.
Plants (Basel) ; 7(2)2018 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-29857498

RESUMO

The majority of organs in plants are not established until after germination, when pluripotent stem cells in the growing apices give rise to daughter cells that proliferate and subsequently differentiate into new tissues and organ primordia. This remarkable capacity is not only restricted to the meristem, since maturing cells in many organs can also rapidly alter their identity depending on the cues they receive. One general feature of plant cell differentiation is a change in cell wall composition at the cell surface. Historically, this has been viewed as a downstream response to primary cues controlling differentiation, but a closer inspection of the wall suggests that it may play a much more active role. Specific polymers within the wall can act as substrates for modifications that impact receptor binding, signal mobility, and cell flexibility. Therefore, far from being a static barrier, the cell wall and its constituent polysaccharides can dictate signal transmission and perception, and directly contribute to a cell's capacity to differentiate. In this review, we re-visit the role of plant cell wall-related genes and polysaccharides during various stages of development, with a particular focus on how changes in cell wall machinery accompany the exit of cells from the stem cell niche.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...