RESUMO
Acinetobacter baumannii is an opportunistic bacterium that causes infection in several sites. Carbapenem-resistant A. baumannii strains (CRAb) lead the World Health Organization's list of 12 pathogens considered a priority for developing new antimicrobials. The pathogenicity of A. baumannii is related to the different virulence factors employed in the colonization of biotic and abiotic surfaces, biofilm formation and multidrug resistance. We analyze the outer membrane protein FilF from A. baumannii in silico and produce it in recombinant form (rFilF). rFilF protein was successfully expressed in Escherichia coli BL21 Star in an insoluble form. Immunization with rFilF induced significant anti-rFilF IgG antibody production in mice, detected by indirect enzyme-linked immunosorbent assay, since the first evaluation until 49th. On the last experimentation day, the predominant immunoglobulin found was IgG1 followed by IgG2a, IgG2b, IgM, IgG3, and IgA. We observe that interleukins 4 and 10 show significant production after the 28th day of experimentation in mice immunized with rFilF. Anti-rFilF pAbs were able to inhibit biofilm formation in nine CRAb strains evaluated, and in the standard strain ATCC® 19606. These results demonstrate the anti-biofilm activity of anti-rFilF antibodies, promising in the development of a non-antibiotic approach based on the control of CRAb strains.
Assuntos
Acinetobacter baumannii , Anticorpos Antibacterianos , Biofilmes , Carbapenêmicos , Biofilmes/efeitos dos fármacos , Acinetobacter baumannii/imunologia , Acinetobacter baumannii/efeitos dos fármacos , Animais , Anticorpos Antibacterianos/imunologia , Carbapenêmicos/farmacologia , Camundongos , Imunoglobulina G/imunologia , Antibacterianos/farmacologia , Infecções por Acinetobacter/imunologia , Infecções por Acinetobacter/microbiologia , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia , Proteínas Recombinantes/genética , Camundongos Endogâmicos BALB C , Feminino , Escherichia coli/genética , Escherichia coli/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Proteínas da Membrana Bacteriana Externa/genéticaRESUMO
Leptospirosis is a widespread zoonotic disease caused by pathogenic spirochetes of the genus Leptospira. The commercially available vaccines are bacterins that offer limited protection, short-term effect, and serovar-specific immunity. The development of novel immunization strategies is crucial to control the infection and decrease the chances of new outbreaks. In this study, purified monoclonal antibodies (mAbs) anti-LipL32 (1D9 and mAb3) were evaluated by their capacity to bind and neutralize the pathogen improving host survival. For that, an in vitro growth inhibition assay, and in vivo passive immunization were performed in animal model. Syrian hamsters were passively immunized by three different strategies. Hamsters immunized with mAb3 6 h prior to the lethal challenge showed a significantly higher survival rate of 61.1%, and a significant reduction in tissue damage in the lungs. Cumulatively, our results showed that anti-LipL32 mAbs inhibited the growth of L. interrogans in vitro, and that passive immunization offered significant protection in animal model when administered prior to infection.