Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Sleep Res ; : e14179, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467353

RESUMO

Insomnia is a prevalent and disabling condition whose treatment is not always effective. This pilot study explores the feasibility and effects of closed-loop auditory stimulation (CLAS) as a potential non-invasive intervention to improve sleep, its subjective quality, and memory consolidation in patients with insomnia. A total of 27 patients with chronic insomnia underwent a crossover, sham-controlled study with 2 nights of either CLAS or sham stimulation. Polysomnography was used to record sleep parameters, while questionnaires and a word-pair memory task were administered to assess subjective sleep quality and memory consolidation. The initial analyses included 17 patients who completed the study, met the inclusion criteria, and received CLAS. From those, 10 (58%) received only a small number of stimuli. In the remaining seven (41%) patients with sufficient CLAS, we evaluated the acute and whole-night effect on sleep. CLAS led to a significant immediate increase in slow oscillation (0.5-1 Hz) amplitude and activity, and reduced delta (1-4 Hz) and sigma/sleep spindle (12-15 Hz) activity during slow-wave sleep across the whole night. All these fundamental sleep rhythms are implicated in sleep-dependent memory consolidation. Yet, CLAS did not change sleep-dependent memory consolidation or sleep macrostructure characteristics, number of arousals, or subjective perception of sleep quality. Results showed CLAS to be feasible in patients with insomnia. However, a high variance in the efficacy of our automated stimulation approach suggests that further research is needed to optimise stimulation protocols to better unlock potential CLAS benefits for sleep structure and subjective sleep quality in such clinical settings.

2.
Front Neurosci ; 18: 1321001, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389790

RESUMO

The pathophysiology of recurrent isolated sleep paralysis (RISP) has yet to be fully clarified. Very little research has been performed on electroencephalographic (EEG) signatures outside RISP episodes. This study aimed to investigate whether sleep is disturbed even without the occurrence of a RISP episode and in a stage different than conventional REM sleep. 17 RISP patients and 17 control subjects underwent two consecutive full-night video-polysomnography recordings. Spectral analysis was performed on all sleep stages in the delta, theta, and alpha band. EEG microstate (MS) analysis was performed on the NREM 3 phase due to the overall high correlation of subject template maps with canonical templates. Spectral analysis showed a significantly higher power of theta band activity in REM and NREM 2 sleep stages in RISP patients. The observed rise was also apparent in other sleep stages. Conversely, alpha power showed a downward trend in RISP patients' deep sleep. MS maps similar to canonical topographies were obtained indicating the preservation of prototypical EEG generators in RISP patients. RISP patients showed significant differences in the temporal dynamics of MS, expressed by different transitions between MS C and D and between MS A and B. Both spectral analysis and MS characteristics showed abnormalities in the sleep of non-episodic RISP subjects. Our findings suggest that in order to understand the neurobiological background of RISP, there is a need to extend the analyzes beyond REM-related processes and highlight the value of EEG microstate dynamics as promising functional biomarkers of RISP.

3.
Front Neurosci ; 17: 1152578, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37425017

RESUMO

Introduction: Psilocybin is one of the most extensively studied psychedelic drugs with a broad therapeutic potential. Despite the fact that its psychoactivity is mainly attributed to the agonism at 5-HT2A receptors, it has high binding affinity also to 5-HT2C and 5-HT1A receptors and indirectly modulates the dopaminergic system. Psilocybin and its active metabolite psilocin, as well as other serotonergic psychedelics, induce broadband desynchronization and disconnection in EEG in humans as well as in animals. The contribution of serotonergic and dopaminergic mechanisms underlying these changes is not clear. The present study thus aims to elucidate the pharmacological mechanisms underlying psilocin-induced broadband desynchronization and disconnection in an animal model. Methods: Selective antagonists of serotonin receptors (5-HT1A WAY100635, 5-HT2A MDL100907, 5-HT2C SB242084) and antipsychotics haloperidol, a D2 antagonist, and clozapine, a mixed D2 and 5-HT receptor antagonist, were used in order to clarify the underlying pharmacology. Results: Psilocin-induced broadband decrease in the mean absolute EEG power was normalized by all antagonists and antipsychotics used within the frequency range 1-25 Hz; however, decreases in 25-40 Hz were influenced only by clozapine. Psilocin-induced decrease in global functional connectivity and, specifically, fronto-temporal disconnection were reversed by the 5-HT2A antagonist while other drugs had no effect. Discussion: These findings suggest the involvement of all three serotonergic receptors studied as well as the role of dopaminergic mechanisms in power spectra/current density with only the 5-HT2A receptor being effective in both studied metrics. This opens an important discussion on the role of other than 5-HT2A-dependent mechanisms underlying the neurobiology of psychedelics.

4.
Diagnostics (Basel) ; 11(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34943539

RESUMO

Sleep disorders are diagnosed in sleep laboratories by polysomnography, a multi-parameter examination that monitors biological signals during sleep. The subsequent evaluation of the obtained records is very time-consuming. The goal of this study was to create an automatic system for evaluation of the airflow and SpO2 channels of polysomnography records, through the use of machine learning techniques and a large database, for apnea and desaturation detection (which is unusual in other studies). To that end, a convolutional neural network (CNN) was designed using hyperparameter optimization. It was then trained and tested for apnea and desaturation. The proposed CNN was compared with the commonly used k-nearest neighbors (k-NN) method. The classifiers were designed based on nasal airflow and blood oxygen saturation signals. The final neural network accuracy for apnea detection reached 84%, and that for desaturation detection was 74%, while the k-NN classifier reached accuracies of 83% and 64% for apnea detection and desaturation detection, respectively.

5.
Transl Psychiatry ; 11(1): 506, 2021 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-34601495

RESUMO

Serotonergic psychedelics are recently gaining a lot of attention as a potential treatment of several neuropsychiatric disorders. Broadband desynchronization of EEG activity and disconnection in humans have been repeatedly shown; however, translational data from animals are completely lacking. Therefore, the main aim of our study was to assess the effects of tryptamine and phenethylamine psychedelics (psilocin 4 mg/kg, LSD 0.2 mg/kg, mescaline 100 mg/kg, and DOB 5 mg/kg) on EEG in freely moving rats. A system consisting of 14 cortical EEG electrodes, co-registration of behavioral activity of animals with subsequent analysis only in segments corresponding to behavioral inactivity (resting-state-like EEG) was used in order to reach a high level of translational validity. Analyses of the mean power, topographic brain-mapping, and functional connectivity revealed that all of the psychedelics irrespective of the structural family induced overall and time-dependent global decrease/desynchronization of EEG activity and disconnection within 1-40 Hz. Major changes in activity were localized on the large areas of the frontal and sensorimotor cortex showing some subtle spatial patterns characterizing each substance. A rebound of occipital theta (4-8 Hz) activity was detected at later stages after treatment with mescaline and LSD. Connectivity analyses showed an overall decrease in global connectivity for both the components of cross-spectral and phase-lagged coherence. Since our results show almost identical effects to those known from human EEG/MEG studies, we conclude that our method has robust translational validity.


Assuntos
Dietilamida do Ácido Lisérgico , Mescalina , Animais , Eletroencefalografia , Dietilamida do Ácido Lisérgico/farmacologia , Psilocibina/análogos & derivados , Psilocibina/farmacologia , Ratos
6.
Sensors (Basel) ; 21(15)2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34372405

RESUMO

Slow-wave synchronous acoustic stimulation is a promising research and therapeutic tool. It is essential to clearly understand the principles of the synchronization methods, to know their performances and limitations, and, most importantly, to have a clear picture of the effect of stimulation on slow-wave activity (SWA). This paper covers the mentioned and currently missing parts of knowledge that are essential for the appropriate development of the method itself and future applications. Artificially streamed real sleep EEG data were used to quantitatively compare the two currently used real-time methods: the phase-locking loop (PLL) and the fixed-step stimulus in our own implementation. The fixed-step stimulation method was concluded to be more reliable and practically applicable compared to the PLL method. The sleep experiment with chronic insomnia patients in our sleep laboratory was analyzed in order to precisely characterize the effect of sound stimulation during deep sleep. We found that there is a significant phase synchronization of delta waves, which were shown to be the most sensitive metric of the effect of acoustic stimulation compared to commonly used averaged signal and power analyses. This finding may change the understanding of the effect and function of the SWA stimulation described in the literature.


Assuntos
Sono de Ondas Lentas , Estimulação Acústica , Eletroencefalografia , Humanos , Modalidades de Fisioterapia , Sono
7.
Diagnostics (Basel) ; 10(12)2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33327626

RESUMO

Functional magnetic resonance imaging (fMRI) techniques and electroencephalography (EEG) were used to investigate sleep with a focus on impaired arousal mechanisms in disorders of arousal (DOAs). With a prevalence of 2-4% in adults, DOAs are significant disorders that are currently gaining attention among physicians. The paper describes a simultaneous EEG and fMRI experiment conducted in adult individuals with DOAs (n=10). Both EEG and fMRI data were validated by reproducing well established EEG and fMRI associations. A method for identification of both brain functional areas and EEG rhythms associated with DOAs in shallow sleep was designed. Significant differences between patients and controls were found in delta, theta, and alpha bands during awakening epochs. General linear models of the blood-oxygen-level-dependent signal have shown the secondary visual cortex and dorsal posterior cingulate cortex to be associated with alpha spectral power fluctuations, and the precuneus with delta spectral power fluctuations, specifically in patients and not in controls. Future EEG-fMRI sleep studies should also consider subject comfort as an important aspect in the experimental design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...