Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(8): e29231, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38644897

RESUMO

In response to high population density, the desert locust, Schistocerca gregaria, becomes gregarious and forms swarms that can cause significant damage to crops and pastures, threatening food security of human populations from western Africa to India. This switch from solitary to gregarious populations is highly dependent on favorable weather conditions. Climate change, which has been hypothesized to shift conditions towards increasing risks of gregarization, is therefore likely to have significant impacts on the spatial distribution and likelihood of outbreak events. However, the desert locust is intensely managed at large scales, which possibly counteracts any increased risk of outbreaks due to a more favorable climate. Consequently, understanding the changes in risks in the future involves teasing out the effects of climate change and management actions. Here we studied the dynamics of gregarization at the very early stages of potential outbreaks, in parallel with trends in climate and management, between 1985 and 2018 in western Africa. We used three different spatial scales, with the goal to have a better understanding of the potential effects of climate change per se while controlling for management. Our first approach was to look at a regional scale, where we observed an overall decrease in gregarization events. However, this scale includes very heterogeneous environments and management efforts. To consider this heterogeneity, we divided the area into a grid of 0.5° cells. For each cell, a climate analysis was performed for rainfall and temperature, with trends obtained by a harmonic decomposition model on monthly data. Analyses of gregarization showed only a few significant trends, both positive and negative, mainly found in western Mauritania where management effort has increased. To improve the statistical power, these cells were then grouped into larger homogeneous climatic clusters, i.e. groups of cells with similar climatic conditions and similar climatic trends over the study period. At this scale, gregarization events depend on the intersection between climate conditions and management efforts. The clusters where gregarization increased were also the ones with the highest increase of management. These results highlight the important effect of preventive management, which may counteract the positive effects of climate change on locust proliferation.

2.
Curr Opin Insect Sci ; 56: 101024, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36958588

RESUMO

Locusts are among the most feared agricultural pests. Spatiotemporal forecasting is a key process in their management. The present review aims to 1) set a common language on the subject, 2) evaluate the current methodologies, and 3) identify opportunities to improve forecasting tools. Forecasts can be used to provide reliable predictions on locust presence, reproduction events, gregarization areas, population outbreaks, and potential impacts on agriculture. Statistical approaches are used for the first four objectives, whereas mechanistic approaches are used for the latter. We advocate 1) to build reliable and reproducible spatiotemporal forecasting systems for the impacts on agriculture, 2) to turn scientific studies into operational forecasting systems, and 3) to evaluate the performance of these systems.


Assuntos
Gafanhotos , Animais , Previsões , Agricultura
3.
Ecol Evol ; 13(1): e9741, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36694552

RESUMO

Lower plant resistance to herbivores following domestication has been suggested as the main cause for higher feeding damage in crops than in wild progenitors. While herbivore compensatory feeding has also been proposed as a possible mechanism for raised damage in crops with low nutritional quality, predictions regarding the effects of plant domestication on nutritional quality for herbivores remain unclear. In particular, data on primary metabolites, even major macronutrients, measured in the organs consumed by herbivores, are scarce. In this study, we used a collection of 10 accessions of wild ancestors and 10 accessions of modern progenies of Triticum turgidum to examine whether feeding damage and selectivity by nymphs of Locusta migratoria primarily depended on five leaf traits related to structural resistance or nutrient profiles. Our results unexpectedly showed that locusts favored wild ancestors over domesticated accessions and that leaf toughness and nitrogen and soluble protein contents increased with the domestication process. Furthermore, the quantitative relationship between soluble protein and digestible carbohydrates was found to poorly meet the specific requirements of the herbivore, in all wheat accessions, both wild and modern. The increase in leaf structural resistance to herbivores in domesticated tetraploid wheat accessions suggested that resource allocation trade-offs between growth and herbivory resistance may have been disrupted by domestication in the vegetative organs of this species. Since domestication did not result in a loss of nutritional quality in the leaves of the tetraploid wheat, our results rather provides evidence for a role of the content of plants in nonnutritive nitrogenous secondary compounds, possibly deterrent or toxic, at least for grasshopper herbivores.

4.
J Insect Physiol ; 145: 104467, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528090

RESUMO

Phenotypic plasticity in body size is a product of modification of the developmental pathway. Although hatchlings of the desert locust, Schistocerca gregaria, show egg size-dependent plasticity in body size, it remains unclear how embryogenesis during egg development regulates final embryonic body size. To determine the developmental pathway causing body size variation at hatching, we examined egg and embryonic development at the early, middle, and late egg developmental stages in S. gregaria by comparing small and large eggs. Crowd-reared females produced larger eggs than isolated-reared females. The daily egg developmental rate was similar between small and large eggs: eggs dramatically absorbed external water after days 3 to 7 and nearly doubled the initial egg weight at the late stage of day 12. Morphological measurements of eggs and embryos at different days after oviposition revealed that large eggs were longer than small eggs throughout developmental stages. However, embryo length was similar between small and large eggs at the early stage (anatrepsis). Embryos begin to absorb yolk into their bodies after blastokinesis. The size of large-egg embryos increased significantly from the middle stage (katatrepsis) due to absorption of more yolk than small eggs. Egg length and embryo length were conspicuously larger in large eggs than in small eggs on day 12 of late katatrepsis. These results suggest that egg size did not influence the egg developmental rate and initial embryo size. Large eggs had more yolk and space, resulting in larger final embryos than small eggs. The amount of yolk and size of eggshells during katatrepsis could play a key role in determining hatchling body size in S. gregaria.


Assuntos
Gafanhotos , Feminino , Animais , Gafanhotos/fisiologia , Óvulo , Oviposição , Aglomeração , Tamanho Corporal , Desenvolvimento Embrionário
5.
Evol Appl ; 15(12): 1988-2001, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36540635

RESUMO

The study of eco-evolutionary dynamics, that is of the intertwinning between ecological and evolutionary processes when they occur at comparable time scales, is of growing interest in the current context of global change. However, many eco-evolutionary studies overlook the role of interindividual interactions, which are hard to predict and yet central to selective values. Here, we aimed at putting forward models that simulate interindividual interactions in an eco-evolutionary framework: the demo-genetic agent-based models (DG-ABMs). Being demo-genetic, DG-ABMs consider the feedback loop between ecological and evolutionary processes. Being agent-based, DG-ABMs follow populations of interacting individuals with sets of traits that vary among the individuals. We argue that the ability of DG-ABMs to take into account the genetic heterogeneity-that affects individual decisions/traits related to local and instantaneous conditions-differentiates them from analytical models, another type of model largely used by evolutionary biologists to investigate eco-evolutionary feedback loops. Based on the review of studies employing DG-ABMs and explicitly or implicitly accounting for competitive, cooperative or reproductive interactions, we illustrate that DG-ABMs are particularly relevant for the exploration of fundamental, yet pressing, questions in evolutionary ecology across various levels of organization. By jointly modelling the effects of management practices and other eco-evolutionary processes on interindividual interactions and population dynamics, DG-ABMs are also effective prospective and decision support tools to evaluate the short- and long-term evolutionary costs and benefits of management strategies and to assess potential trade-offs. Finally, we provide a list of the recent practical advances of the ABM community that should facilitate the development of DG-ABMs.

6.
J Insect Physiol ; 143: 104454, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36343666

RESUMO

Collective motion is one of the most impressive common features of gregarious locusts: once formed, bands and swarms get moving for long distances. It was shown that visual perception of neighbours plays a key role in maintaining marching behaviour at a local scale. But at a larger scale, mechanisms underlying band cohesion are less understood. It was shown in several field studies that individuals separated from the band were able to get back to the group, even after being separated since a night. In this context, faeces' odours could be a possible indicator of the recent passage of a group. In this study, we tested if nymphs are attracted by faeces' odours and if this effect is modulated by the age of the faeces. To this end, we conducted individual olfactometric behavioural assays of 3rd instar hoppers of desert locust, Schistocerca gregaria, exposed to odours of 1 h-old and 24 h-old faeces. We also used Gas Chromatography-Mass Spectrometry (GC-MS) to identify odours' volatile organic compounds from faeces. The results of behavioural assays indicated a strong attractive effect of faeces, with no preference for one of the two faecal age classes. Nymphs spent significantly more time in the side of the olfactometer where the faeces' odours came from, and 72.7% of tested individuals chose this side first. We filtered and annotated 11 volatile organic compounds present in both fresh and old faeces in GC-MS analyses, including guaiacol and phenol, which are known to cause an aggregative effect on desert locusts. As the attractive effect lasted over 24 h, band's faeces could still have an attractive effect when individuals are separated from the band since one day. In this situation, latecomers individuals would be able to get back to the group by following the traces of their predecessors.


Assuntos
Gafanhotos , Compostos Orgânicos Voláteis , Animais , Odorantes , Ninfa , Fezes/química
7.
J Insect Physiol ; 136: 104328, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34826390

RESUMO

At high density, juvenile locusts create marching hopper bands. Understanding the roles of temperature and vegetation on the movement of these bands shall allow to better forecast and control them. Following a hopper band in North Argentina in November 2019, we explored the thermoregulation behaviours of the South American locust, Schistocerca cancellata. Gut-content samples informed about the feeding status at different time of the day. Hoppers' body temperature was above cold air temperature in the mornings during basking and group-basking activities and before the onset of marching behaviour. Marching by walking or hopping was dominant at body temperatures close to 40 °C. Jumping, stilting, shading and perching on plants were seen as thermoregulatory behaviours to avoid ground temperatures above 50 °C. Feeding was observed throughout the day with continuous high gut contents despite an intermittent pattern of feeding-resting-marching. Speed and daily travelled distance of the front of the hopper band was depending on the type of encountered vegetation. Daily behavioural patterns, thermoregulatory behaviours, walking speed and daily travelled distances of S. cancellata were similar to the ones observed for the Desert locust, S. gregaria, in Africa. High air temperatures recorded during the observation times could explain the continuous feeding patterns. These species may have evolved behaviours of alternating consuming a bit and marching as a migration strategy to avoid staying where no food is available after the havoc left behind large hopper bands. Recommendations made for the control of Desert locust hopper bands can be extended to South American locust ones.


Assuntos
Gafanhotos , Animais , Regulação da Temperatura Corporal , Comportamento Alimentar , Plantas , Temperatura
8.
J Insect Physiol ; 136: 104331, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34838517

RESUMO

The desert locust, Schistocerca gregaria, shows a density-dependent reproductive trade-off by laying fewer but larger eggs in crowded conditions (gregarious phase) than in isolated conditions (solitarious phase). However, the physiological mechanisms controlling reproductive resource allocation remain unclear. We examined how egg production processes, including ovulation timing (i.e., oogenesis period), oocyte and ovarian growth rates, and oosorption rate (resorbing developing terminal oocytes), regulate reproductive outputs (egg biomass per clutch, egg size, and clutch size) during a reproductive cycle in S. gregaria by rearing them either under isolated or crowded conditions. We observed a common density-dependent negative correlation between egg size and clutch size, with no significant difference in egg biomass between the two rearing conditions. Dissection of female locusts after different days of oviposition revealed that the daily oocyte growth rate was almost similar between the two rearing conditions, but crowd-reared females ovulated later than isolated-reared ones, resulting in further oocyte growth in the former. Terminal oocytes were renewed by previous penultimate oocytes at the onset of a new reproductive cycle, and oosorption mainly occurred at an early stage in both rearing conditions; however, crowd-reared locusts displayed higher levels of oosorption compared to their isolated-reared counterparts. Crowding induced a high oosorption rate, resulting in a reduced clutch size and a prolonged oogenesis period, which in turn allowed oocytes to intake more yolk, which was probably recycled via oosorption. These results suggest that the length of the oogenesis period and oosorption rate are manipulated by maternal density, and these physiological modifications interactively regulate reproductive trade-off in S. gregaria.


Assuntos
Gafanhotos , Reprodução , Animais , Tamanho da Ninhada , Feminino , Oócitos , Oogênese
9.
Proc Natl Acad Sci U S A ; 118(42)2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34635592

RESUMO

Male mating harassment may occur when females and males do not have the same mating objectives. Communal animals need to manage the costs of male mating harassment. Here, we demonstrate how desert locusts in dense populations reduce such conflicts through behaviors. In transient populations (of solitarious morphology but gregarious behavior), we found that nongravid females occupied separate sites far from males and were not mating, whereas males aggregated on open ground (leks), waiting for gravid females to enter the lekking sites. Once a male mounted a gravid female, no other males attacked the pair; mating pairs were thereby protected during the vulnerable time of oviposition. In comparison, solitarious locusts displayed a balanced sex ratio in low-density populations, and females mated irrespective of their ovarian state. Our results indicate that the mating behaviors of desert locusts are density dependent and that sex-biased behavioral group separation may minimize the costs of male mating harassment and competition.


Assuntos
Gafanhotos/fisiologia , Comportamento Sexual Animal , Animais , Feminino , Masculino , Ovário/crescimento & desenvolvimento , Razão de Masculinidade
10.
Ecol Evol ; 11(20): 13930-13947, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34707829

RESUMO

Under environmental stress, previously hidden additive genetic variation can be unmasked and exposed to selection. The amount of hidden variation is expected to be higher for life history traits, which strongly correlate to individual fitness, than for morphological traits, in which fitness effects are more ambiguous. However, no consensual pattern has been recovered yet, and this idea is still debated in the literature. Here, we hypothesize that the classical categorization of traits (i.e., life history and morphology) may fail to capture their proximity to fitness. In the desert locust, Schistocerca gregaria, a model organism for the study of insect polyphenism, we quantified changes in additive genetic variation elicited by lifetime thermal stress for ten traits, in which evolutionary significance is known. Irrespective of their category, traits under strong stabilizing selection showed genetic invariance with environmental stress, while traits more loosely associated with fitness showed a marked increase in additive genetic variation in the stressful environment. Furthermore, traits involved in adaptive phenotypic plasticity (growth compensation) showed either no change in additive genetic variance or a change of moderate magnitude across thermal environments. We interpret this mitigated response of plastic traits in the context of integrated evolution to adjust the entire phenotype in heterogeneous environments (i.e., adaptiveness of initial plasticity, compromise of phenotypic compensation with stress, and shared developmental pathway). Altogether, our results indicate, in agreement with theoretical expectations, that environmental stress can increase available additive genetic variance in some desert locust traits, but those closely linked to fitness are largely unaffected. Our study also highlights the importance of assessing the proximity to fitness of a trait on a case-by-case basis and in an ecologically relevant context, as well as considering the processes of canalization and plasticity, involved in the control of phenotypic variation.

11.
Pest Manag Sci ; 77(12): 5463-5474, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34346543

RESUMO

BACKGROUND: A poorly organised risk management system may dysfunction when used. The consequences can be dramatic for those supposed to be protected. Since the 1960s, preventive control strategies, with field officers as living memory, have been developed to monitor locusts. Preserving their experience of past plagues is consequently essential. Wrong use of their knowledge can disrupt the whole management chain. We explored these conditions using a multi-agent model representing a preventive system. We simulated how the field teams' tendency to repeatedly visit past outbreak areas (hotspots) by allocating them an attraction weight can help in preventing plagues. RESULTS: When field teams' attention remained constant over time, there was dramatic decrease in the number of plagues, with increasing interest in hotspots, as long as interest was less than 2.5 times more than elsewhere. When the field teams were only attentive during recession times, plagues were better controlled using a low weight for hotspots. The spatial structure of hotspot distribution had an effect: the more frequent and the bigger the hotspots, the lower the optimal hotspot weighting needed to reduce plagues. CONCLUSION: Orienting surveys towards hotspots particularly during recession times reduces plagues. The spatial structure of locust habitats may influence the way they are managed. Habitats located outside the multiple hotspots of species such as the desert locust should be visited more frequently than those with only one hotspot, such as the South American locust. The decline/loss of the field officers' experience highlights the need to save, capitalise and disseminate this knowledge. © 2021 Society of Chemical Industry.


Assuntos
Gafanhotos , Animais , Ecossistema , Humanos
12.
Commun Biol ; 4(1): 513, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953329

RESUMO

The occurrence of natural root grafts, the union of roots of the same or different trees, is common and shared across tree species. However, their significance for forest ecology remains little understood. While early research suggested negative effects of root grafting with the risk of pathogen transmission, recent evidence supports the hypothesis that it is an adaptive strategy that reduces stress by facilitating resource exchange. Here, by analysing mangrove root graft networks in a non-destructive way at stand level, we show further evidence of cooperation-associated benefits of root grafting. Grafted trees were found to dominate the upper canopy of the forest, and as the probability of grafting and the frequency of grafted groups increased with a higher environmental stress, the mean number of trees within grafted groups decreased. While trees do not actively 'choose' neighbours to graft to, our findings point to the existence of underlying mechanisms that regulate 'optimal group size' selection related to resource use within cooperating networks. This work calls for further studies to better understand tree interactions (i.e. network hydraulic redistribution) and their consequences for individual tree and forest stand resilience.


Assuntos
Raízes de Plantas/crescimento & desenvolvimento , Rhizophoraceae/crescimento & desenvolvimento , Estresse Fisiológico , Árvores/crescimento & desenvolvimento
13.
Ecol Appl ; 31(4): e02310, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33605475

RESUMO

All terrestrial ectotherms are constrained to some degree by their thermal environment and the extent to which they can behaviorally buffer variable thermal conditions. New biophysical modeling methods (NicheMapR) allow the calculation of the body temperature of thermoregulating animals anywhere in the world from first principles, but require detailed observational data for parameterization and testing. Here we describe the thermoregulatory biology of marching bands of the desert locust, Schistocerca gregaria, in the Sahara Desert of Mauritania where extreme heat and strong diurnal fluctuations are a major constraint on activity and physiological processes. Using a thermal infrared camera in the field, we showed that gregarious nymphs altered the microhabitats they used, as well as postural thermoregulatory behaviors, to maintain relatively high body temperature (nearly 40°C). Field and laboratory experiments demonstrated that the preferred body temperature accelerated digestive rates. Migratory bands frequently left foraging sites with full guts before consuming all vegetation and moved to another habitat before emptying their foregut. Thus, the repertoire for behavioral thermoregulation in the desert locust strongly facilitates foraging and digestion rates, which may accelerate developmental rates and increase survival. We used our data to successfully parameterize a general biophysical model of thermoregulatory behavior that could capture hourly body temperature and activity at our remote site using globally available environmental forcing data. This modeling approach provides a stronger basis for forecasting thermal constraints on locust outbreaks under current and future climates.


Assuntos
Gafanhotos , Animais , Clima , Ecossistema , Temperatura
14.
Glob Chang Biol ; 26(7): 3753-3755, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32347994

RESUMO

While large-scale monitoring, early detection and control can greatly reduce desert locust invasions, global change is most likely to affect conditions that promote the transition from solitary to gregarious populations. Although climate change scenarios point to an increase in aridity and further desertification in vast areas of Africa, some regions that have been at the origin of past outbreaks are likely to see a reversed trend (i.e., increase in frequency and intensity of rains), potentially favoring the formation of swarms. This makes reinforcing early detection and keeping a sustained monitoring effort in place even more important under climate change.


Assuntos
Mudança Climática , Gafanhotos , África , África Oriental , Animais , Clima Desértico , Surtos de Doenças
15.
J Insect Physiol ; 122: 104020, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32035952

RESUMO

Egg-size adjustment is one of the important plastic life-history traits for animals living in heterogeneous environments. The adaptive investment hypothesis predicts that mothers should increase progeny size according to certain cues predicting adverse future conditions of their offspring. However, reproductive resources are limited, and females have to simultaneously reduce egg number to allocate more resources to increase size. It remains unclear how single individuals alter egg size and number according to temporally heterogeneous environments. In the present study, we examined how desert locusts, Schistocerca gregaria, plastically alter egg size and number according to population density. We also investigated the trans-generational maternal effects on progeny characteristics as well as their own maternal physiological response (oviposition interval). Females kept in crowded conditions laid significantly larger and heavier eggs by reducing clutch size (number of eggs per egg pod) compared to isolated females, suggesting the existence of a reproductive trade-off between the two traits. The crowding-forced isolated females induced concerted changes not only in egg size but also in egg number tending towards those characteristics of gregarious control, implying that single individuals showed trade-off when egg size was increased. Double-blind testing confirmed the rapid crowding effects on egg size. Females also responded to crowding by extending the oviposition interval. As the oviposition interval extended, egg size increased, but clutch size decreased. Eggs from crowding-forced isolated females began to produce gregarious-phase type hatchlings (large and black) instead of solitarious-phase type ones (small and green). These results suggested that S. gregaria plastically manipulate egg size by regulating egg numbers and egg production rate, and indicated the presence of trans-generational maternal effects on progeny phase.


Assuntos
Gafanhotos/fisiologia , Oviposição/fisiologia , Densidade Demográfica , Reprodução/fisiologia , Animais , Tamanho da Ninhada , Aglomeração , Ovos , Feminino , Pigmentação/fisiologia
16.
Pest Manag Sci ; 76(3): 1094-1102, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31571348

RESUMO

BACKGROUND: The spatial structure of locust outbreaks is a major aspect of preventive management that relies on where survey teams have to be sent if they are to react in time to any upsurge. The concentration of areas propitious to outbreaks has been documented for many species. Areas where preventive management fails to collect information because of insecurity or remoteness constitute other limits. We explored these conditions using a spatially explicit multi-agent model representing a preventive management system. We simulated areas where field teams had limited or no access and areas where the probability of initial outbreaks was concentrated in hotspots. RESULTS: A strong effort by the budget holder to maintain funding over time might be cancelled out with 5% of a territory having limited access. The larger the area of no access, the worse the proportion of plague years. Multiple no access areas generated more plagues than only one no access area of an equivalent size because more fronts must be controlled. Concentrating outbreaks in hotspots increased the probability of plagues. One hotspot alone was easier to control than several same-sized hotspots. The period of the budget holder's cyclical behaviour between awareness and reduction in funding was longer with one hotspot than with several. CONCLUSION: These results highlight the need to consider the spatial conditions and accessibility of locust species when planning the sustainability of management systems. Despite significant budgets to set in place a preventive management system, cyclical locust outbreaks may be related to these spatial conditions. © 2019 Society of Chemical Industry.


Assuntos
Gafanhotos , Animais , Incerteza
17.
Environ Entomol ; 47(3): 551-558, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29509897

RESUMO

The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.


Assuntos
Formigas/fisiologia , Cacau , Cadeia Alimentar , Heterópteros/fisiologia , Controle Biológico de Vetores , Animais , Cacau/crescimento & desenvolvimento , Camarões , Controle de Insetos , Dinâmica Populacional
18.
Pest Manag Sci ; 74(1): 46-58, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28628265

RESUMO

BACKGROUND: Preventive management of locust plagues works in some cases but still fails frequently. The role of funding institution awareness was suggested as a potential facilitating factor for cyclic locust plagues. We designed a multi-agent system to represent the events of locust plague development and a management system with three levels: funding institution, national control unit and field teams. A sensitivity analysis identified the limits and improvements of the management system. RESULTS: The model generated cyclic locust plagues through a decrease in funding institution awareness. The funding institution could improve its impact by increasing its support by just a few percent. The control unit should avoid hiring too many field teams when plagues bring in money, in order to ensure that surveys can be maintained in times of recession. The more information the teams can acquire about the natural system, the more efficient they will be. CONCLUSION: We argue that anti-locust management should be considered as a complex adaptive system. This not only would allow managers to prove to funders the random aspect of their needs, but would also enable funders and decision-makers to understand and integrate their own decisions into the locust dynamics that still regularly affect human populations. © 2017 Society of Chemical Industry.


Assuntos
Financiamento de Capital , Gafanhotos , Controle de Insetos/economia , Controle de Insetos/métodos , Animais , Controle de Insetos/instrumentação , Modelos Teóricos
19.
Glob Chang Biol ; 23(11): 4739-4749, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28464493

RESUMO

The desert locust is an agricultural pest that is able to switch from a harmless solitarious stage, during recession periods, to swarms of gregarious individuals that disperse long distances and affect areas from western Africa to India during outbreak periods. Large outbreaks have been recorded through centuries, and the Food and Agriculture Organization keeps a long-term, large-scale monitoring survey database in the area. However, there is also a much less known subspecies that occupies a limited area in Southern Africa. We used large-scale climatic and occurrence data of the solitarious phase of each subspecies during recession periods to understand whether both subspecies climatic niches differ from each other, what is the current potential geographical distribution of each subspecies, and how climate change is likely to shift their potential distribution with respect to current conditions. We evaluated whether subspecies are significantly specialized along available climate gradients by using null models of background climatic differences within and between southern and northern ranges and applying niche similarity and niche equivalency tests. The results point to climatic niche conservatism between the two clades. We complemented this analysis with species distribution modeling to characterize current solitarious distributions and forecast potential recession range shifts under two extreme climate change scenarios at the 2050 and 2090 time horizon. Projections suggest that, at a global scale, the northern clade could contract its solitarious recession range, while the southern clade is likely to expand its recession range. However, local expansions were also predicted in the northern clade, in particular in southern and northern margins of the current geographical distribution. In conclusion, monitoring and management practices should remain in place in northern Africa, while in Southern Africa the potential for the subspecies to pose a threat in the future should be investigated more closely.


Assuntos
Distribuição Animal , Mudança Climática , Ecossistema , Gafanhotos/fisiologia , África , Animais , Ásia , Clima , Gafanhotos/classificação , Dinâmica Populacional , Risco
20.
PLoS One ; 11(5): e0155736, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27227885

RESUMO

In insects, extra-molting has been viewed as a compensatory mechanism for nymphal growth that contributes to optimize body weight for successful reproduction. However, little is known on the capacity of extra-molting to evolve in natural populations, which limits our understanding of how selection acts on nymphal growth. We used a multi-generational pedigree, individual monitoring and quantitative genetics models to investigate the evolution of extra-molting and its impact on nymphal growth in a solitarious population of the desert locust, Schistocerca gregaria. Growth compensation via extra-molting was observed for 46% of the females, whose adult weight exceeded by 4% that of other females, at a cost of a 22% longer development time. We found a null heritability for body weight threshold only, and the highest and a strongly female-biased heritability for extra molting. Our genetic estimates show that (1) directional selection can act on growth rate, development time and extra-molting to optimize body weight threshold, the target of stabilizing selection, (2) extra-molting can evolve in natural populations, and (3) a genetic conflict, due to sexually antagonistic selection on extra-molting, might prevent its fixation. Finally, we discuss how antagonistic selection between solitarious and gregarious environments and/or genetic correlations between growth and phase traits might also impact the evolution of extra-molting in locusts.


Assuntos
Clima Desértico , Gafanhotos/crescimento & desenvolvimento , Muda/fisiologia , Ninfa/crescimento & desenvolvimento , Reprodução/fisiologia , Animais , Peso Corporal , Fenômenos Fisiológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...