Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
2.
Cancer Res Commun ; 3(9): 1899-1911, 2023 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-37772994

RESUMO

Defining feature of pancreatic ductal adenocarcinoma (PDAC) that participates in the high mortality rate and drug resistance is the immune-tolerant microenvironment which enables tumors to progress unabated by adaptive immunity. In this study, we report that PDAC cells release CSF-1 to induce nucleotide-binding domain, leucine-rich containing family, pyrin domain-containing-3 (NLRP3) activation in myeloid cells. Increased NLRP3 expression was found in the pancreas of patients with PDAC when compared with normal pancreas which correlated with the formation of the NLRP3 inflammasome. Using human primary cells and an orthotopic PDAC mouse model, we show that NLRP3 activation is responsible for the maturation and release of the inflammatory cytokine IL1ß which selectively drives Th2-type inflammation via COX2/PGE2 induction. As a result of this inflammation, primary tumors were characterized by reduced cytotoxic CD8+ T-cell activation and increased tumor expansion. Genetic deletion and pharmacologic inhibition of NLRP3 enabled the development of Th1 immunity, increased intratumoral levels of IL2, CD8+ T cell­mediated tumor suppression, and ultimately limited tumor growth. In addition, we observed that NLRP3 inhibition in combination with gemcitabine significantly increased the efficacy of the chemotherapy. In conclusion, this study provides a mechanism by which tumor-mediated NLRP3 activation exploits a distinct adaptive immunity response that facilitates tumor escape and progression. Considering the ability to block NLRP3 activity with safe and small orally active molecules, this protein represents a new promising target to improve the limited therapeutic options in PDAC. SIGNIFICANT: This study provides novel molecular insights on how PDAC cells exploit NLRP3 activation to suppress CD8 T-cell activation. From a translational perspective, we demonstrate that the combination of gemcitabine with the orally active NLRP3 inhibitor OLT1177 increases the efficacy of monotherapy.

3.
Cell Rep Med ; 4(8): 101150, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586327

RESUMO

The implementation of cancer immunotherapies has seen limited clinical success in head and neck squamous cell carcinoma (HNSCC). Interleukin-2 (IL-2), which modulates the survival and functionality of lymphocytes, is an attractive target for new immunotherapies but one that is limited by presence of regulatory T cells (Tregs) expressing the high-affinity IL-2Rα. The bispecific immunocytokine PD1-IL2v preferentially delivers IL-2 signaling through IL-2Rßγ on PD-1-expressing cells. Selectively targeting the intermediate-affinity IL-2Rßγ can be leveraged to induce anti-tumor immune responses in effector T cells and natural killer (NK) cells while limiting the negative regulation of IL-2Rα activation on Tregs. Using radiation therapy (RT) in combination with PD1-IL2v improves local tumor control and survival, and controls metastatic spread in orthotopic HNSCC tumor models. PD1-IL2v drives systemic activation and expansion of circulating and tumor-infiltrating cytotoxic T cells and NK cells while limiting Treg-mediated immunosuppression. These data show that PD1-L2v induces durable systemic tumor control in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Interleucina-2 , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Interleucina-2/farmacologia , Interleucina-2/uso terapêutico , Subunidade alfa de Receptor de Interleucina-2 , Linfócitos T Citotóxicos , Neoplasias de Cabeça e Pescoço/radioterapia
4.
Am Soc Clin Oncol Educ Book ; 43: e390290, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37459578

RESUMO

What does the future of cancer immunotherapy look like and how do we get there? Find out where we've been and where we're headed in A Report on Resistance: The Road to personalized immunotherapy.

5.
Cancer Cell ; 41(5): 950-969.e6, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37116489

RESUMO

In pancreatic ductal adenocarcinoma (PDAC) patients, we show that response to radiation therapy (RT) is characterized by increased IL-2Rß and IL-2Rγ along with decreased IL-2Rα expression. The bispecific PD1-IL2v is a PD-1-targeted IL-2 variant (IL-2v) immunocytokine with engineered IL-2 cis targeted to PD-1 and abolished IL-2Rα binding, which enhances tumor-antigen-specific T cell activation while reducing regulatory T cell (Treg) suppression. Using PD1-IL2v in orthotopic PDAC KPC-driven tumor models, we show marked improvement in local and metastatic survival, along with a profound increase in tumor-infiltrating CD8+ T cell subsets with a transcriptionally and metabolically active phenotype and preferential activation of antigen-specific CD8+ T cells. In combination with single-dose RT, PD1-IL2v treatment results in a robust, durable expansion of polyfunctional CD8+ T cells, T cell stemness, tumor-specific memory immune response, natural killer (NK) cell activation, and decreased Tregs. These data show that PD1-IL2v leads to profound local and distant response in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Linfócitos T CD8-Positivos , Receptor de Morte Celular Programada 1 , Subunidade alfa de Receptor de Interleucina-2/uso terapêutico , Interleucina-2/farmacologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/radioterapia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/radioterapia , Carcinoma Ductal Pancreático/tratamento farmacológico , Imunoterapia
6.
Int J Radiat Oncol Biol Phys ; 116(3): 627-639, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36599398

RESUMO

PURPOSE: Curative intent treatment of pancreatic adenocarcinoma (PDAC) relies on surgical resection. Modern treatment protocols focus on optimizing neoadjuvant therapy to increase resectability and improve oncologic outcomes. To elucidate differences in outcomes, we investigated the relationship between neoadjuvant chemotherapy (NAC), either with or without stereotactic body radiation therapy (SBRT), and vascular inflammation, surgical outcomes, and the resultant transcriptomic changes. METHODS AND MATERIALS: Clinical data were collected from patients with borderline resectable PDAC (clinical T3-T4N0-1) who underwent NAC or NAC-SBRT followed by curative intent resection between 2014 and 2019. Vascular structures on surgical specimens were histologically evaluated for vasculitis. RNA sequencing was used to evaluate differential gene expression and to generate enrichment maps. Multivariate analysis was used to analyze the relationship between patient characteristics and oncological outcome. RESULTS: In total, 46 patients met inclusion criteria (n = 12 NAC, n = 34 NAC-SBRT) with a median follow-up of 20.1 months. All patients underwent curative resection, with 91.3% achieving R0. There was no significant difference in patterns of failure, overall survival, or progression-free survival between NAC and NAC-SBRT groups. Patients with vasculitis had a lower median overall survival compared with those without (14.5 vs 28.3 months; hazard ratio, 12.96; 95% confidence interval, 3.55-47.28; P < .001). There was no significant correlation between inflammation and surgical complications or pathologic response. Neoadjuvant therapy did not have a significant effect on development of vasculitis (odds radio, 1.64 for NAC-SBRT; 95% confidence interval, 0.40-8.43; P = .52). Predictors of poor survival included perineural invasion and high baseline carbohydrate antigen 19-9 (CA19-9) (>191 U/mL). Patients with robust CA19-9 (>20% decrease) responses to neoadjuvant therapy had enrichment in immune response, chemotaxis, and cytotoxic T-cell and natural killer-cell proliferation. CONCLUSIONS: Vasculitis predicts for poor survival outcomes in patients with PDAC; NAC-SBRT did not increase the rate of vasculitis compared with NAC. Perineural invasion and CA19-9 remain strong prognosticators. Understanding and optimizing immune interactions remain a crucial hurdle in achieving response in pancreatic cancer.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Vasculite , Humanos , Neoplasias Pancreáticas/patologia , Antígeno CA-19-9 , Adenocarcinoma/patologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Carcinoma Ductal Pancreático/terapia , Terapia Neoadjuvante/métodos , Resultado do Tratamento , Vasculite/tratamento farmacológico , Vasculite/etiologia , Inflamação , Estudos Retrospectivos , Neoplasias Pancreáticas
8.
Nat Cancer ; 3(11): 1300-1317, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36434392

RESUMO

Five-year survival for human papilloma virus-unrelated head and neck squamous cell carcinomas remain below 50%. We assessed the safety of administering combination hypofractionated stereotactic body radiation therapy with single-dose durvalumab (anti-PD-L1) neoadjuvantly (n = 21) ( NCT03635164 ). The primary endpoint of the study was safety, which was met. Secondary endpoints included radiographic, pathologic and objective response; locoregional control; progression-free survival; and overall survival. Among evaluable patients at an early median follow-up of 16 months (448 d or 64 weeks), overall survival was 80.1% with 95% confidence interval (95% CI) (62.0%, 100.0%), locoregional control and progression-free survival were 75.8% with 95% CI (57.5%, 99.8%), and major pathological response or complete response was 75% with 95% exact CI (51.6%, 100.0%). For patients treated with 24 Gy, 89% with 95% CI (57.1%, 100.0%) had MPR or CR. Using high-dimensional multi-omics and spatial data as well as biological correlatives, we show that responders had: (1) an increase in effector T cells; (2) a decrease in immunosuppressive cells; and (3) an increase in antigen presentation post-treatment.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Radiocirurgia , Humanos , Neoplasias de Cabeça e Pescoço/terapia , Terapia Neoadjuvante/efeitos adversos , Infecções por Papillomavirus/complicações , Radiocirurgia/efeitos adversos , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia
9.
Nat Commun ; 13(1): 3535, 2022 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-35725568

RESUMO

Differential outcomes of EphB4-ephrinB2 signaling offers formidable challenge for the development of cancer therapeutics. Here, we interrogate the effects of targeting EphB4 and ephrinB2 in head and neck squamous cell carcinoma (HNSCC) and within its microenvironment using genetically engineered mice, recombinant constructs, pharmacologic agonists and antagonists. We observe that manipulating the EphB4 intracellular domain on cancer cells accelerates tumor growth and angiogenesis. EphB4 cancer cell loss also triggers compensatory upregulation of EphA4 and T regulatory cells (Tregs) influx and their targeting results in reversal of accelerated tumor growth mediated by EphB4 knockdown. EphrinB2 knockout on cancer cells and vasculature, on the other hand, results in maximal tumor reduction and vascular normalization. We report that EphB4 agonism provides no additional anti-tumoral benefit in the absence of ephrinB2. These results identify ephrinB2 as a tumor promoter and its receptor, EphB4, as a tumor suppressor in HNSCC, presenting opportunities for rational drug design.


Assuntos
Efrina-B2 , Neoplasias de Cabeça e Pescoço , Receptor EphB4 , Carcinoma de Células Escamosas de Cabeça e Pescoço , Animais , Efrina-B2/genética , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Camundongos , Receptor EphB4/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Microambiente Tumoral
10.
Clin Cancer Res ; 28(5): 1013-1026, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-34862244

RESUMO

PURPOSE: Metastasis remains a major hurdle in treating aggressive malignancies such as pancreatic ductal adenocarcinoma (PDAC). Improving response to treatment, therefore, requires a more detailed characterization of the cellular populations involved in controlling metastatic burden. EXPERIMENTAL DESIGN: PDAC patient tissue samples were subjected to RNA sequencing analysis to identify changes in immune infiltration following radiotherapy. Genetically engineered mouse strains in combination with orthotopic tumor models of PDAC were used to characterize disease progression. Flow cytometry was used to analyze tumor infiltrating, circulating, and nodal immune populations. RESULTS: We demonstrate that although radiotherapy increases the infiltration and activation of dendritic cells (DC), it also increases the infiltration of regulatory T cells (Treg) while failing to recruit natural killer (NK) and CD8 T cells in PDAC patient tissue samples. In murine orthotopic tumor models, we show that genetic and pharmacologic depletion of Tregs and NK cells enhances and attenuates response to radiotherapy, respectively. We further demonstrate that targeted inhibition of STAT3 on Tregs results in improved control of local and distant disease progression and enhanced NK-mediated immunosurveillance of metastasis. Moreover, combination treatment of STAT3 antisense oligonucleotide (ASO) and radiotherapy invigorated systemic immune activation and conferred a survival advantage in orthotopic and metastatic tumor models. Finally, we show the response to STAT3 ASO + radiotherapy treatment is dependent on NK and DC subsets. CONCLUSIONS: Our results suggest targeting Treg-mediated immunosuppression is a critical step in mediating a response to treatment, and identifying NK cells as not only a prognostic marker of improved survival, but also as an effector population that functions to combat metastasis.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Adenocarcinoma/genética , Adenocarcinoma/patologia , Adenocarcinoma/terapia , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/terapia , Progressão da Doença , Humanos , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/terapia , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores , Neoplasias Pancreáticas
11.
Mol Ther ; 30(3): 1149-1162, 2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-34793974

RESUMO

STAT3 signaling has been shown to regulate cellular function and cytokine production in the tumor microenvironment (TME). Within the head and neck squamous cell carcinoma (HNSCC) TME, we previously showed that therapeutic targeting of STAT3 in combination with radiation resulted in improved tumor growth delay. However, given the independent regulatory effects STAT3 has on anti-tumor immunity, we aimed to decipher the effects of individually targeting STAT3 in the cancer cell, regulatory T cells (Tregs), and natural killer (NK) cell compartments in driving tumor growth and resistance to therapy in HNSCCs. We utilized a CRISPR knockout system for genetic deletion of STAT3 within the cancer cell as well as two genetic knockout mouse models, FoxP3-Cre/STAT3 fl and NKp46-Cre/STAT3 fl, for Tregs and NK cell targeting, respectively. Our data revealed differences in development of resistance to treatment with STAT3 CRISPR knockout in the cancer cell, driven by differential recruitment of immune cells. Knockout of STAT3 in Tregs overcomes this resistance and results in Treg reprogramming and recruitment and activation of antigen-presenting cells. In contrast, knockout of STAT3 in the NK cell compartment results in NK cell inactivation and acceleration of tumor growth. These data underscore the complex interplay between the cancer cell and the immune TME and carry significant implications for drug targeting and design of combination approaches in HNSCCs.


Assuntos
Neoplasias de Cabeça e Pescoço , Fator de Transcrição STAT3/metabolismo , Animais , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/terapia , Camundongos , Camundongos Knockout , Fator de Transcrição STAT3/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T Reguladores , Microambiente Tumoral/genética
12.
Cancer Immunol Immunother ; 71(5): 1049-1061, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34559306

RESUMO

Resistance to radiation therapy (RT) remains an obstacle in HPV-negative head and neck squamous cell carcinomas (HNSCCs)-even with a combined RT-immunotherapy approach. Jak-Stat proteins have long been studied for both their immune regulatory role in the host immune response as well as their cancer cell signaling role in shaping the tumor microenvironment (TME). Here, we identify STAT1 as a mediator of radioresistance in HPV-negative preclinical mouse models of HNSCC, by which knockout of STAT1 in the cancer cell (STAT1 KO)-but not in the host-resulted in decreased tumor growth alongside increased immune activation. We show that RT increases STAT1/pSTAT1 expression, which may act as a marker of radioresistance. Whereas RT increased JAK-STAT and interferon (IFN) signaling, transcriptomic analysis revealed that STAT1 KO in the cancer cell resulted in decreased expression of IFN-associated genes of resistance. In vitro experiments showed that STAT1 KO increased T cell chemoattraction and decreased baseline growth. These results indicate that STAT1 may serve a tumor-promoting role in the cancer cell and will inform biomarker development and treatment regimens for HNSCC incorporating RT.


Assuntos
Neoplasias de Cabeça e Pescoço , Infecções por Papillomavirus , Animais , Linhagem Celular Tumoral , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imunoterapia , Camundongos , Fator de Transcrição STAT1/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Linfócitos T , Microambiente Tumoral
13.
Clin Cancer Res ; 27(22): 6235-6249, 2021 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-34518311

RESUMO

PURPOSE: Natural killer (NK) cells are type I innate lymphoid cells that are known for their role in killing virally infected cells or cancer cells through direct cytotoxicity. In addition to direct tumor cell killing, NK cells are known to play fundamental roles in the tumor microenvironment through secretion of key cytokines, such as FMS-like tyrosine kinase 3 ligand (FLT3L). Although radiotherapy is the mainstay treatment in most cancers, the role of radiotherapy on NK cells is not well characterized. EXPERIMENTAL DESIGN: This study combines radiation, immunotherapies, genetic mouse models, and antibody depletion experiments to identify the role of NK cells in overcoming resistance to radiotherapy in orthotopic models of head and neck squamous cell carcinoma. RESULTS: We have found that NK cells are a crucial component in the development of an antitumor response, as depleting them removes efficacy of the previously successful combination treatment of radiotherapy, anti-CD25, and anti-CD137. However, in the absence of NK cells, the effect can be rescued through treatment with FLT3L. But neither radiotherapy with FLT3L therapy alone nor radiotherapy with anti-NKG2A yields any meaningful tumor growth delay. We also identify a role for IL2 in activating NK cells to secrete FLT3L. This activity, we show, is mediated through CD122, the intermediate affinity IL2 receptor, and can be targeted with anti-CD25 therapy. CONCLUSIONS: These findings highlight the complexity of using radio-immunotherapies to activate NK cells within the tumor microenvironment, and the importance of NK cells in activating dendritic cells for increased tumor surveillance.


Assuntos
Neoplasias de Cabeça e Pescoço , Radioimunoterapia , Animais , Neoplasias de Cabeça e Pescoço/radioterapia , Humanos , Imunidade Inata , Células Matadoras Naturais , Proteínas de Membrana , Camundongos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Microambiente Tumoral
14.
J Immunother Cancer ; 9(4)2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883256

RESUMO

BACKGROUND: Numerous trials combining radiation therapy (RT) and immunotherapy in head and neck squamous cell carcinoma (HNSCC) are failing. Using preclinical immune cold models of HNSCC resistant to RT-immune checkpoint inhibitors, we investigate therapeutic approaches of overcoming such resistance by examining the differential microenvironmental response to RT. METHODS: We subjected two HPV-negative orthotopic mouse models of HNSCC to combination RT, regulatory T cells (Treg) depletion, and/or CD137 agonism. Tumor growth was measured and intratumorous and lymph node immune populations were compared among treatment groups. Human gene sets, genetically engineered mouse models DEREG and BATF3-/-, flow and time-of-flight cytometry, RNA-Seq, Treg adoptive transfer studies, and in vitro experiments were used to further evaluate the role of dendritic cells (DCs) and Tregs in these treatments. RESULTS: In MOC2 orthotopic tumors, we find no therapeutic benefit to targeting classically defined immunosuppressive myeloids, which increase with RT. In these radioresistant tumors, supplementing combination RT and Treg depletion with anti-CD137 agonism stimulates CD103+ DC activation in tumor-draining lymph nodes as characterized by increases in CD80+ and CCR7+ DCs, resulting in a CD8 T cell-dependent response. Simultaneously, Tregs are reprogrammed to an effector phenotype demonstrated by increases in interferonγ+, tumor necrosis factorα+, PI3K+, pAKT+ and Eomes+ populations as well as decreases in CTLA4+ and NRP-1+ populations. Tumor eradication is observed when RT is increased to an 8 Gy x 5 hypofractionated regimen and combined with anti-CD25+ anti-CD137 treatment. In a human gene set from oral squamous cell carcinoma tumors, high Treg number is associated with earlier recurrence. CONCLUSIONS: Regulating Treg functionality and DC activation status within the lymph node is critical for generating a T cell effector response in these highly radioresistant tumors. These findings underscore the plasticity of Tregs and represent a new therapeutic opportunity for reprogramming the tumor microenvironment in HNSCCs resistant to conventional radioimmunotherapy approaches.


Assuntos
Antineoplásicos Imunológicos/farmacologia , Células Dendríticas/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/terapia , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia , Hipofracionamento da Dose de Radiação , Tolerância a Radiação , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linhagem Celular Tumoral , Terapia Combinada , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/patologia , Subunidade alfa de Receptor de Interleucina-2/antagonistas & inibidores , Subunidade alfa de Receptor de Interleucina-2/metabolismo , Depleção Linfocítica , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Carga Tumoral , Microambiente Tumoral , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/antagonistas & inibidores , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
15.
J Immunother Cancer ; 9(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33789881

RESUMO

BACKGROUND: Resistance to therapy is a major problem in treating head and neck squamous cell carcinomas (HNSCC). Complement system inhibition has been shown to reduce tumor growth, metastasis, and therapeutic resistance in other tumor models, but has yet to be explored in the context of HNSCC. Here, we tested the effects of complement inhibition and its therapeutic potential in HNSCC. METHODS: We conducted our studies using two Human Papilloma Virus (HPV)-negative HNSCC orthotopic mouse models. Complement C3aR and C5aR1 receptor antagonists were paired with radiation therapy (RT). Tumor growth was measured and immune populations from tumor, lymph node, and peripheral blood were compared among various treatment groups. Genetically engineered mouse models DEREG and C3-/- were used in addition to standard wild type models. Flow cytometry, clinical gene sets, and in vitro assays were used to evaluate the role complement receptor blockade has on the immunological makeup of the tumor microenvironment. RESULTS: In contrast to established literature, inhibition of complement C3a and C5a signaling using receptor antagonists accelerated tumor growth in multiple HNSCC cell lines and corresponded with increased frequency of regulatory T cell (Treg) populations. Local C3a and C5a signaling has importance for CD4 T cell homeostasis and eventual development into effector phenotypes. Interruption of this signaling axis drives a phenotypic conversion of CD4+ T cells into Tregs, characterized by enhanced expression of Foxp3. Depletion of Tregs reversed tumor growth, and combination of Treg depletion and C3a and C5a receptor inhibition decreased tumor growth below that of the control groups. Complete knockout of C3 does not harbor the expected effect on tumor growth, indicating a still undetermined compensatory mechanism. Dexamethasone is frequently prescribed to patients undergoing RT and inhibits complement activation. We report no deleterious effects associated with dexamethasone due to complement inhibition. CONCLUSIONS: Our data establish Tregs as a pro-tumorigenic driver during complement inhibition and provide evidence that targeted C3a and C5a receptor inhibition may add therapeutic advantage when coupled with anti-Treg therapy.


Assuntos
Inativadores do Complemento/toxicidade , Neoplasias de Cabeça e Pescoço/metabolismo , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptores de Complemento/antagonistas & inibidores , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complemento C3/genética , Complemento C3/metabolismo , Dexametasona/toxicidade , Fatores de Transcrição Forkhead/metabolismo , Neoplasias de Cabeça e Pescoço/genética , Neoplasias de Cabeça e Pescoço/imunologia , Neoplasias de Cabeça e Pescoço/patologia , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor da Anafilatoxina C5a/metabolismo , Receptores de Complemento/metabolismo , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos
16.
Cancer Res ; 81(12): 3255-3269, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33526513

RESUMO

Stromal fibrosis activates prosurvival and proepithelial-to-mesenchymal transition (EMT) pathways in pancreatic ductal adenocarcinoma (PDAC). In patient tumors treated with neoadjuvant stereotactic body radiation therapy (SBRT), we found upregulation of fibrosis, extracellular matrix (ECM), and EMT gene signatures, which can drive therapeutic resistance and tumor invasion. Molecular, functional, and translational analysis identified two cell-surface proteins, a disintegrin and metalloprotease 10 (ADAM10) and ephrinB2, as drivers of fibrosis and tumor progression after radiation therapy (RT). RT resulted in increased ADAM10 expression in tumor cells, leading to cleavage of ephrinB2, which was also detected in plasma. Pharmacologic or genetic targeting of ADAM10 decreased RT-induced fibrosis and tissue tension, tumor cell migration, and invasion, sensitizing orthotopic tumors to radiation killing and prolonging mouse survival. Inhibition of ADAM10 and genetic ablation of ephrinB2 in fibroblasts reduced the metastatic potential of tumor cells after RT. Stimulation of tumor cells with ephrinB2 FC protein reversed the reduction in tumor cell invasion with ADAM10 ablation. These findings represent a model of PDAC adaptation that explains resistance and metastasis after RT and identifies a targetable pathway to enhance RT efficacy. SIGNIFICANCE: Targeting a previously unidentified adaptive resistance mechanism to radiation therapy in PDAC tumors in combination with radiation therapy could increase survival of the 40% of PDAC patients with locally advanced disease.See related commentary by Garcia Garcia et al., p. 3158 GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/12/3255/F1.large.jpg.


Assuntos
Proteína ADAM10/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Carcinoma Ductal Pancreático/radioterapia , Transição Epitelial-Mesenquimal , Fibrose/patologia , Raios gama/efeitos adversos , Proteínas de Membrana/metabolismo , Neoplasias Pancreáticas/radioterapia , Lesões por Radiação/patologia , Proteína ADAM10/antagonistas & inibidores , Proteína ADAM10/genética , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/genética , Animais , Antifibróticos/uso terapêutico , Apoptose , Carcinoma Ductal Pancreático/patologia , Movimento Celular , Proliferação de Células , Efrina-B2/sangue , Feminino , Fibrose/tratamento farmacológico , Fibrose/etiologia , Fibrose/metabolismo , Humanos , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Pancreáticas/patologia , Prognóstico , Lesões por Radiação/tratamento farmacológico , Lesões por Radiação/etiologia , Lesões por Radiação/metabolismo , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Cancer Immunol Immunother ; 70(4): 989-1000, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33097963

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) has a heterogeneous tumor microenvironment (TME) comprised of myeloid-derived suppressor cells (MDSCs), tumor-associated macrophages, neutrophils, regulatory T cells, and myofibroblasts. The precise mechanisms that regulate the composition of the TME and how they contribute to radiotherapy (RT) response remain poorly understood. In this study, we analyze changes in immune cell populations and circulating chemokines in patient samples and animal models of pancreatic cancer to characterize the immune response to radiotherapy. Further, we identify STAT3 as a key mediator of immunosuppression post-RT. We found granulocytic MDSCs (G-MDSCs) and neutrophils to be increased in response to RT in murine and human PDAC samples. We also found that RT-induced STAT3 phosphorylation correlated with increased MDSC infiltration and proliferation. Targeting STAT3 using an anti-sense oligonucleotide in combination with RT circumvented RT-induced MDSC infiltration, enhanced the proportion of effector T cells, and improved response to RT. In addition, STAT3 inhibition contributed to the remodeling of the PDAC extracellular matrix when combined with RT, resulting in decreased collagen deposition and fibrotic tissue formation. Collectively, our data provide evidence that targeting STAT3 in combination with RT can mitigate the pro-tumorigenic effects of RT and improve tumor response.


Assuntos
Carcinoma Ductal Pancreático/radioterapia , Raios gama , Células Supressoras Mieloides/imunologia , Oligonucleotídeos Antissenso/genética , Neoplasias Pancreáticas/radioterapia , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Apoptose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/patologia , Proliferação de Células , Feminino , Humanos , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Células Supressoras Mieloides/metabolismo , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Prognóstico , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores/imunologia , Células Tumorais Cultivadas , Microambiente Tumoral
18.
Mol Carcinog ; 59(9): 1064-1075, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32567728

RESUMO

The aggressive nature of glioblastoma multiforme (GBM) may be attributed to the dysregulation of pathways driving both proliferation and invasion. EphrinB2, a membrane-bound ligand for some of the Eph receptors, has emerged as a critical target regulating these pathways. In this study, we investigated the role of ephrinB2 in regulating proliferation and invasion in GBM using intracranial and subcutaneous xenograft models. The Cancer Genome Atlas analysis suggested high transcript and low methylation levels of ephrinB2 as poor prognostic indicators in GBM, consistent with its role as an oncogene. EphrinB2 knockdown, however, increased tumor growth, an effect that was reversed by ephrinB2 Fc protein. This was associated with EphB4 receptor activation, consistent with the data showing a significant decrease in tumor growth with ephrinB2 overexpression. Mechanistic analyses showed that ephrinB2 knockdown has anti-invasive but pro-proliferative effects in GBM. EphB4 stimulation following ephrinB2 Fc treatment in ephrinB2 knockdown tumors was shown to impart strong anti-proliferative and anti-invasive effects, which correlated with decrease in PCNA, p-ERK, vimentin, Snail, Fak, and increase in the E-cadherin levels. Overall, our study suggests that ephrinB2 cannot be used as a sole therapeutic target. Concomitant inhibition of ephrinB2 signaling with EphB4 activation is required to achieve maximal therapeutic benefit in GBM.


Assuntos
Biomarcadores Tumorais/metabolismo , Proliferação de Células , Efrina-B2/metabolismo , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Receptor EphB4/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Efrina-B2/genética , Feminino , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Nus , Invasividade Neoplásica , Fosforilação , Prognóstico , Receptor EphB4/genética , Taxa de Sobrevida , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Carcinog ; 59(7): 754-765, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32363633

RESUMO

Fibroblasts are a key component of the tumor microenvironment (TME) that can serve as a scaffold for tumor cell migration and augment the tumor's ability to withstand harsh conditions. When activated by external or endogenous stimuli, normal fibroblasts become cancer associated fibroblasts (CAFs), a heterogeneous group of stromal cells in the tumor that are phenotypically and epigenetically different from normal fibroblasts. Dynamic crosstalk between cancer cells, immune cells, and CAFs through chemokines and surface signaling makes the TME conducive to tumor growth. When activated, CAFs promote tumorigenesis and metastasis through several phenomena including regulation of tumor immunity, metabolic reprogramming of the TME, extracellular matrix remodeling and contraction, and induction of therapeutic resistance. Ionizing radiation (radiation theraphy [RT]) is a potent immunological stimulant that has been shown to increase cytotoxic Teff infiltration and IFN-I stimulated genes. RT, however, is unable to overcome the infiltration and activation of immunosuppressive cells which can contribute to tumor progression. Another paradox of RT is that, while very effective at killing cancer cells, it can contribute to the formation of CAFs. This review examines how the interplay between CAFs and immune cells during RT contributes to organ fibrosis, immunosuppression, and tumor growth. We focus on targeting mechanistic pathways of CAF formation as a potentially effective strategy not only for preventing organ fibrosis, but also in hampering tumor progression in response to RT.


Assuntos
Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Neoplasias/imunologia , Neoplasias/patologia , Animais , Fibroblastos Associados a Câncer/efeitos da radiação , Fibrose/imunologia , Fibrose/patologia , Humanos , Neoplasias/radioterapia , Radioterapia/métodos , Microambiente Tumoral/imunologia , Microambiente Tumoral/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...