Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Soc Trans ; 34(Pt 5): 783-5, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17052197

RESUMO

Cell integrity MAPK (mitogen-activated protein kinase) function can be provided in yeast cells by either the native Slt2(Mpk1)p of yeast or by a heterologously expressed human ERK5 (extracellular-signal-regulated kinase 5). Both of these MAPKs need the Hsp90 (heat-shock protein 90) chaperone for their activation, so that when Hsp90 function is compromised their activities are low. This, in turn, affects the capacity of these MAPKs to control the transcription factors that regulate cell integrity genes.


Assuntos
Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP90/fisiologia , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Transcrição Gênica , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico HSP90/genética , Humanos , Proteína Quinase 7 Ativada por Mitógeno/genética
2.
Mol Microbiol ; 42(4): 919-30, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11737636

RESUMO

A factor influencing resistances of food spoilage microbes to sorbate and benzoate is whether these organisms are able to catalyse the degradation of these preservative compounds. Several fungi metabolize benzoic acid by the beta-ketoadipate pathway, involving the hydroxylation of benzoate to 4-hydroxybenzoate. Saccharomyces cerevisiae is unable to use benzoate as a sole carbon source, apparently through the lack of benzoate-4-hydroxylase activity. However a single gene from the food spoilage yeast Zygosaccharomyces bailii, heterologously expressed in S. cerevisiae cells, can enable growth of the latter on benzoate, sorbate and phenylalanine. Although this ZbYME2 gene is essential for benzoate utilization by Z. bailii, its ZbYme2p product has little homology to other fungal benzoate-4-hydroxylases studied to date, all of which appear to be microsomal cytochrome P450s. Instead, ZbYme2p has strong similarity to the matrix domain of the S. cerevisiae mitochondrial protein Yme2p/Rna12p/Prp12p and, when expressed as a functional fusion to green fluorescent protein in S. cerevisiae growing on benzoate, is largely localized to mitochondria. The phenotypes associated with loss of the native Yme2p from S. cerevisiae, mostly apparent in yme1,yme2 cells, may relate to increased detrimental effects of endogenous oxidative stress. Heterologous expression of ZbYME2 complements these phenotypes, yet it also confers a potential for weak acid preservative catabolism that the native S. cerevisiae Yme2p is unable to provide. Benzoate utilization by S. cerevisiae expressing ZbYME2 requires a functional mitochondrial respiratory chain, but not the native Yme1p and Yme2p of the mitochondrion.


Assuntos
Ácido Benzoico/metabolismo , Proteínas Fúngicas/genética , Genes Fúngicos , Proteínas Mitocondriais/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Sórbico/metabolismo , Zygosaccharomyces/genética , Proteases Dependentes de ATP , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Antifúngicos/metabolismo , Microbiologia de Alimentos , Conservantes de Alimentos/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas de Fluorescência Verde , Indicadores e Reagentes/metabolismo , Proteínas Luminescentes/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
3.
Mol Genet Genomics ; 265(2): 258-63, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11361336

RESUMO

Recent studies on Drosophila and Caenorhabditis elegans indicate that increases in stress resistance result in a longer chronological life span, an effect that must operate primarily on the postmitotic tissues of the adult. Stress resistance can be increased through decreases in Hsp90 chaperone activity, since Hsp90 acts to downregulate the activity of heat shock transcription factor. This study investigated whether the increases in stress resistance associated with reduced Hsp90 chaperone activity influence ageing in the budding yeast Saccharomyces cerevisiae, ageing being measured either as the replicative (nonchronological) senescence of budding cells or as the chronological ageing of non-dividing (stationary phase) cultures. Overactivation of the heat shock response caused no slowing of replicative senescence. In some situations though it was associated with a longer chronological life span of stationary cells, the yeast equivalent of the postmitotic state. This is consistent with the idea that stress resistance exerts its life span-extending effects primarily in postmitotic cells and tissues.


Assuntos
Ciclofilinas , Proteínas de Choque Térmico HSP90/metabolismo , Saccharomyces cerevisiae/fisiologia , Proteínas de Transporte/metabolismo , Peptidil-Prolil Isomerase F , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Peptidilprolil Isomerase/metabolismo , Proteínas de Saccharomyces cerevisiae
4.
Yeast ; 18(6): 499-509, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11284006

RESUMO

Budding yeast can be considered to have two distinct lifespans: (a) a replicative (budding, non-chronological) lifespan, measured as the number of daughters produced by each actively dividing mother cell; and (ii) a chronological lifespan, measured as the ability of stationary cultures to maintain viability over time. In non-dividing cells, essential components that become damaged cannot be diluted out through cell division but must, of necessity, be turned over and renewed. By elevating stress resistances, many of the activities needed for such renewal should be elevated with commensurate reduction in the steady-state levels of damaged cell components. Therefore, chronological lifespan in particular might be expected to relate to stress resistance. For yeast to attain a full chronological lifespan requires the expression of the general stress response. It is more important, though, that the cells should be efficiently adapted to respiratory maintenance, since it is cultures grown to stationary phase on respiratory media that usually display the longest chronological lifespans. For this reason, respiration-adapted cells potentially provide a better model of chronological ageing than cultures pre-grown on glucose.


Assuntos
Saccharomyces cerevisiae/crescimento & desenvolvimento , Animais , Ciclo Celular/fisiologia , Contagem de Colônia Microbiana , Meios de Cultura , Glucose/metabolismo , Glicerol/metabolismo , Temperatura Alta , Mitose/fisiologia , Consumo de Oxigênio/fisiologia , Ploidias , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
5.
Curr Opin Investig Drugs ; 2(11): 1606-10, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11763165

RESUMO

Geldanamycin and radicicol, antibiotics produced by Streptomycetes and fungi, respectively, were originally discovered many years ago. Only recently was it discovered that they bind with high specificity within the ADP/ATP binding pocket of the Hsp90 molecular chaperone, thereby inhibiting the function of Hsp90. In eukaryotic cells Hsp90 catalyzes the final activation step of many of the most important regulatory proteins. Cells that lose this function are severely compromised and cannot progress through the cell cycle. In cell-culture systems, the administration of geldanamycin induces degradation of several signal transduction proteins of oncological importance. Hsp90 inhibitors are, therefore, now attracting considerable attention as potential antitumor agents; one geldanamycin derivative is already in phase I trials as an anticancer drug. These drugs may also have virucidal, antimalarial and ischemia-protective effects.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/síntese química , Antifúngicos/administração & dosagem , Antifúngicos/síntese química , Desenho de Fármacos , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Chaperonas Moleculares/antagonistas & inibidores , Chaperonas Moleculares/metabolismo
6.
Mol Microbiol ; 37(3): 595-605, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10931353

RESUMO

Yeast cells display an adaptive stress response when exposed to weak organic acids at low pH. This adaptation is important in the spoilage of preserved foods, as it allows growth in the presence of weak acid food preservatives. In Saccharomyces cerevisiae, this stress response leads to strong induction of the Pdr12 ATP-binding cassette (ABC) transporter, which catalyses the active efflux of weak acid anions from the cytosol of adapted cells. S. cerevisiae cells lacking the Cmk1 isoform of Ca2+-calmodulin-dependent protein kinase are intrinsically resistant to weak acid stress, in that they do not need to spend a long adaptive period in lag phase before resuming growth after exposure to this stress. This resistance of the cmk1 mutant is Pdr12 dependent and, unlike with wild-type S. cerevisiae, cmk1 cells are capable of performing Pdr12-specific functions such as energy-dependent cellular extrusion of fluorescein and benzoate. However, they have neither higher PDR12 gene promoter activity nor higher Pdr12 protein levels. The increased Pdr12 activity in cmk1 cells is therefore caused by Cmk1 exerting a negative post-transcriptional influence over the activity of the Pdr12 ABC transporter, a transporter protein that is constitutively expressed in low-pH yeast cultures. This is the first preliminary evidence that shows a protein kinase, either directly or indirectly, regulating the activity of a yeast ABC transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Resistência Microbiana a Medicamentos/genética , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/genética , Saccharomyces cerevisiae/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Ácidos/farmacologia , Deleção de Genes , Compostos Orgânicos/farmacologia , Processamento de Proteína Pós-Traducional/genética , Saccharomyces cerevisiae/metabolismo
7.
EMBO J ; 19(16): 4383-92, 2000 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-10944121

RESUMO

How the ATPase activity of Heat shock protein 90 (Hsp90) is coupled to client protein activation remains obscure. Using truncation and missense mutants of Hsp90, we analysed the structural implications of its ATPase cycle. C-terminal truncation mutants lacking inherent dimerization displayed reduced ATPase activity, but dimerized in the presence of 5'-adenylamido-diphosphate (AMP-PNP), and AMP-PNP- promoted association of N-termini in intact Hsp90 dimers was demonstrated. Recruitment of p23/Sba1 to C-terminal truncation mutants also required AMP-PNP-dependent dimerization. The temperature- sensitive (ts) mutant T101I had normal ATP affinity but reduced ATPase activity and AMP-PNP-dependent N-terminal association, whereas the ts mutant T22I displayed enhanced ATPase activity and AMP-PNP-dependent N-terminal dimerization, indicating a close correlation between these properties. The locations of these residues suggest that the conformation of the 'lid' segment (residues 100-121) couples ATP binding to N-terminal association. Consistent with this, a mutation designed to favour 'lid' closure (A107N) substantially enhanced ATPase activity and N-terminal dimerization. These data show that Hsp90 has a molecular 'clamp' mechanism, similar to DNA gyrase and MutL, whose opening and closing by transient N-terminal dimerization are directly coupled to the ATPase cycle.


Assuntos
Adenosina Trifosfatases/metabolismo , Proteínas de Escherichia coli , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Saccharomyces cerevisiae , Trifosfato de Adenosina/metabolismo , Adenilil Imidodifosfato/metabolismo , Proteínas de Bactérias/metabolismo , Dicroísmo Circular , Reagentes de Ligações Cruzadas/farmacologia , DNA Girase , DNA Topoisomerases Tipo II/metabolismo , Dimerização , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Cinética , Modelos Biológicos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Proteínas MutL , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Fenótipo , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espectrometria de Fluorescência , Temperatura , Fatores de Tempo
8.
J Bacteriol ; 181(15): 4644-52, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10419965

RESUMO

Growth of Saccharomyces cerevisiae in the presence of the weak-acid preservative sorbic acid results in the induction of the ATP-binding cassette (ABC) transporter Pdr12 in the plasma membrane (P. Piper, Y. Mahe, S. Thompson, R. Pandjaitan, C. Holyoak, R. Egner, M. Muhlbauer, P. Coote, and K. Kuchler, EMBO J. 17:4257-4265, 1998). Pdr12 appears to mediate resistance to water-soluble, monocarboxylic acids with chain lengths of from C(1) to C(7). Exposure to acids with aliphatic chain lengths greater than C(7) resulted in no observable sensitivity of Deltapdr12 mutant cells compared to the parent. Parent and Deltapdr12 mutant cells were grown in the presence of sorbic acid and subsequently loaded with fluorescein. Upon addition of an energy source in the form of glucose, parent cells immediately effluxed fluorescein from the cytosol into the surrounding medium. In contrast, under the same conditions, cells of the Deltapdr12 mutant were unable to efflux any of the dye. When both parent and Deltapdr12 mutant cells were grown without sorbic acid and subsequently loaded with fluorescein, upon the addition of glucose no efflux of fluorescein was detected from either strain. Thus, we have shown that Pdr12 catalyzes the energy-dependent extrusion of fluorescein from the cytosol. Lineweaver-Burk analysis revealed that sorbic and benzoic acids competitively inhibited ATP-dependent fluorescein efflux. Thus, these data provide strong evidence that sorbate and benzoate anions compete with fluorescein for a putative monocarboxylate binding site on the Pdr12 transporter.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Membrana Celular/metabolismo , Saccharomyces cerevisiae/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina/metabolismo , Ânions/metabolismo , Transporte Biológico/efeitos dos fármacos , Ácidos Carboxílicos/farmacologia , Citosol/metabolismo , Fluoresceína/farmacocinética , Concentração de Íons de Hidrogênio , Cinética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Relação Estrutura-Atividade , Fatores de Tempo , Vanadatos/farmacologia
9.
J Med Chem ; 42(2): 260-6, 1999 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-9925731

RESUMO

The cellular activity of several regulatory and signal transduction proteins, which depend on the Hsp90 molecular chaperone for folding, is markedly decreased by geldanamycin and by radicicol (monorden). We now show that these unrelated compounds both bind to the N-terminal ATP/ADP-binding domain of Hsp90, with radicicol displaying nanomolar affinity, and both inhibit the inherent ATPase activity of Hsp90 which is essential for its function in vivo. Crystal structure determinations of Hsp90 N-terminal domain complexes with geldanamycin and radicicol identify key aspects of their nucleotide mimicry and suggest a rational basis for the design of novel antichaperone drugs.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Lactonas/farmacologia , Quinonas/farmacologia , Difosfato de Adenosina/química , Adenosina Trifosfatases/antagonistas & inibidores , Antibióticos Antineoplásicos/química , Antibióticos Antineoplásicos/metabolismo , Benzoquinonas , Calorimetria , Cristalografia por Raios X , Proteínas de Choque Térmico HSP90/metabolismo , Lactamas Macrocíclicas , Lactonas/química , Lactonas/metabolismo , Macrolídeos , Modelos Moleculares , Mimetismo Molecular , Quinonas/química , Quinonas/metabolismo , Relação Estrutura-Atividade
10.
EMBO J ; 18(3): 754-62, 1999 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-9927435

RESUMO

The in vivo function of the heat shock protein 90 (Hsp90) molecular chaperone is dependent on the binding and hydrolysis of ATP, and on interactions with a variety of co-chaperones containing tetratricopeptide repeat (TPR) domains. We have now analysed the interaction of the yeast TPR-domain co-chaperones Sti1 and Cpr6 with yeast Hsp90 by isothermal titration calorimetry, circular dichroism spectroscopy and analytical ultracentrifugation, and determined the effect of their binding on the inherent ATPase activity of Hsp90. Sti1 and Cpr6 both bind with sub-micromolar affinity, with Sti1 binding accompanied by a large conformational change. Two co-chaperone molecules bind per Hsp90 dimer, and Sti1 itself is found to be a dimer in free solution. The inherent ATPase activity of Hsp90 is completely inhibited by binding of Sti1, but is not affected by Cpr6, although Cpr6 can reactivate the ATPase activity by displacing Sti1 from Hsp90. Bound Sti1 makes direct contact with, and blocks access to the ATP-binding site in the N-terminal domain of Hsp90. These results reveal an important role for TPR-domain co-chaperones as regulators of the ATPase activity of Hsp90, showing that the ATP-dependent step in Hsp90-mediated protein folding occurs after the binding of the folding client protein, and suggesting that ATP hydrolysis triggers client-protein release.


Assuntos
Adenosina Trifosfatases/metabolismo , Ciclofilinas , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Adenosina Trifosfatases/química , Adenosina Trifosfatases/genética , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Peptidil-Prolil Isomerase F , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico , Substâncias Macromoleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Peptidilprolil Isomerase/química , Peptidilprolil Isomerase/genética , Peptidilprolil Isomerase/metabolismo , Sequências Repetitivas de Aminoácidos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae
11.
FEMS Microbiol Lett ; 170(1): 89-95, 1999 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-9919656

RESUMO

Weak organic acid food preservatives exert pronounced culture pH-dependent effects on both the heat-shock response and the thermotolerance of Saccharomyces cerevisiae. In low-pH cultures, they inhibit this stress response and cause strong induction of respiratory-deficient petites amongst the survivors of lethal heat treatment. In higher pH cultures, 25 degrees C sorbic acid treatment causes a strong induction of thermotolerance without inducing the heat-shock response. In this study we show that trehalose, a major stress protectant, accumulates rapidly in S. cerevisiae exposed to sorbate at low pH. In pH 3.5 cultures, a 25 degrees C sorbate treatment is as effective as a 39 degrees C heat shock in inducing trehalose. This weak-acid-induced trehalose accumulation is enhanced in the pfk1 S. cerevisiae mutant, indicating that it arises through inhibition of glycolysis at the phosphofructokinase step. The more preservative-resistant food spoilage yeast Zygosaccharomyces bailii differs from S. cerevisiae in that: (1) its basal thermotolerance is not strongly affected by culture pH; (2) it does not display trehalose accumulation in response to 25 degrees C sorbate treatment at low pH; and (3) there is no induction of respiratory-deficient petites during lethal heating with sorbate. This probably reflects Z. bailii being both petite-negative and better equipped for maintenance of homeostasis during weak-acid, pH or high-temperature stress.


Assuntos
Conservantes de Alimentos/farmacologia , Saccharomyces cerevisiae/efeitos dos fármacos , Ácido Sórbico/farmacologia , Trealose/metabolismo , Zygosaccharomyces/efeitos dos fármacos , Glicólise , Resposta ao Choque Térmico , Concentração de Íons de Hidrogênio , Fosfofrutoquinase-1/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Zygosaccharomyces/crescimento & desenvolvimento , Zygosaccharomyces/metabolismo
12.
Free Radic Biol Med ; 27(11-12): 1219-27, 1999 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-10641714

RESUMO

Saccharomyces cerevisiae could provide a simple experimental system for testing the antioxidant or pro-oxidant actions of chemicals, because it has the capacity for aerobic and anaerobic growth and can readily lose its mitochondrial electron transport chain (the major endogenous source of reactive oxygen species [ROS]). This study showed that yeast superoxide dismutase mutants, in a simple petri dish test, readily distinguish a compound that enhances the detrimental effects of endogenous ROS production by the mitochondrial respiratory chain from another chemical that generates oxidative stress by redox cycling. Using this system, weak organic acid food preservatives are shown to exert a strong pro-oxidant action on aerobic yeast cells. In addition these acids are mutagenic toward the yeast mitochondrial genome, even at levels that are subinhibitory to growth. This raises the concern that the large-scale consumption of these preservatives in the human diet may generate oxidative stress within the epithelia of the gastrointestinal tract.


Assuntos
Mutação , Oxidantes/farmacologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , DNA Fúngico/efeitos dos fármacos , DNA Mitocondrial/efeitos dos fármacos , Etanol/farmacologia , Conservantes de Alimentos , Mutagênicos/farmacologia , NADP/metabolismo , Oxirredução , Estresse Oxidativo , Espécies Reativas de Oxigênio/metabolismo , Vitamina K/farmacologia
13.
Acta Crystallogr D Biol Crystallogr ; 54(Pt 4): 671-4, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9761871

RESUMO

Recombinant Sulfolobus solfataricus glyceraldehyde-3-phosphate dehydrogenase has been purified and found to be a tetramer of 148 kDa. The enzyme shows dual cofactor specificity and uses NADP+ in preference to NAD+. The sequence has been compared with other GAPDH proteins including those from other archaeal sources. The purified protein has been crystallized from ammonium sulfate to produce crystals that diffract to 2.4 A with a space group of P43212 or P41212. A native data set has been collected to 2.4 A using synchrotron radiation and cryocooling.


Assuntos
Proteínas de Bactérias/química , Gliceraldeído-3-Fosfato Desidrogenases/química , Sulfolobus/enzimologia , Sequência de Aminoácidos , Proteínas de Bactérias/isolamento & purificação , Cristalização , Cristalografia por Raios X , Gliceraldeído-3-Fosfato Desidrogenases/isolamento & purificação , Espectrometria de Massas , Dados de Sequência Molecular , Conformação Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência , Homologia de Sequência de Aminoácidos
14.
EMBO J ; 17(16): 4829-36, 1998 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-9707442

RESUMO

Hsp90 is an abundant molecular chaperone essential to the establishment of many cellular regulation and signal transduction systems, but remains one of the least well described chaperones. The biochemical mechanism of protein folding by Hsp90 is poorly understood, and the direct involvement of ATP has been particularly contentious. Here we demonstrate in vitro an inherent ATPase activity in both yeast Hsp90 and the Escherichia coli homologue HtpG, which is sensitive to inhibition by the Hsp90-specific antibiotic geldanamycin. Mutations of residues implicated in ATP binding and hydrolysis by structural studies abolish this ATPase activity in vitro and disrupt Hsp90 function in vivo. These results show that Hsp90 is directly ATP dependent in vivo, and suggest an ATP-coupled chaperone cycle for Hsp90-mediated protein folding.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Adenosina Trifosfatases/metabolismo , Sítios de Ligação , Calorimetria , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Hidrólise , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/metabolismo
15.
FEBS Lett ; 418(1-2): 123-6, 1997 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-9414109

RESUMO

Several stresses cause additional activation to the glucose-stimulated plasma membrane H+-ATPase activity of yeast, but it is not clear how this is achieved. We recently reported that cells lacking the integral plasma membrane heat shock protein Hsp30 display enhanced increases in plasma membrane H+-ATPase activity with either heat shock or weak organic acid stress (Piper, P.W., Ortiz-Calderon, C., Holyoak, C., Coote, P. and Cole, M. (1997) Cell Stress and Chaperones 2, 12-24), indicating that the stress induction of Hsp30 acts to reduce stress stimulation of the H+-ATPase. In this study it is shown that Hsp30 acts to reduce the Vmax of H+-ATPase in heat shocked cells. Its action is lost with deletion of the C-terminal 11 amino acids of the H+-ATPase, a deletion that does not abolish the stress stimulation of this enzyme. Mutation of the Thr-912 residue within the C-terminal domain of H+-ATPase, a potential site of phosphorylation by the Ca2+-calmodulin-dependent protein kinase, also abolishes any effect of Hsp30. Hsp30 may therefore be acting on a Thr-912 phosphorylated form of the H+-ATPase.


Assuntos
Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , ATPases Translocadoras de Prótons/química , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/enzimologia , Substituição de Aminoácidos , Membrana Celular/enzimologia , Ativação Enzimática , Glucose/farmacologia , Proteínas de Choque Térmico HSP30 , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Mutagênese Sítio-Dirigida , Reação em Cadeia da Polimerase , ATPases Translocadoras de Prótons/biossíntese , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Deleção de Sequência , Treonina
16.
Cell ; 90(1): 65-75, 1997 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-9230303

RESUMO

Hsp90 molecular chaperones in eukaryotic cells play essential roles in the folding and activation of a range of client proteins involved in cell cycle regulation, steroid hormone responsiveness, and signal transduction. The biochemical mechanism of Hsp90 is poorly understood, and the involvement of ATP in particular is controversial. Crystal structures of complexes between the N-terminal domain of the yeast Hsp90 chaperone and ADP/ATP unambiguously identify a specific adenine nucleotide binding site homologous to the ATP-binding site of DNA gyrase B. This site is the same as that identified for the antitumor agent geldanamycin, suggesting that geldanamycin acts by blocking the binding of nucleotides to Hsp90 and not the binding of incompletely folded client polypeptides as previously suggested. These results finally resolve the question of the direct involvement of ATP in Hsp90 function.


Assuntos
Difosfato de Adenosina/metabolismo , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Estrutura Secundária de Proteína , Sequência de Aminoácidos , Antibióticos Antineoplásicos/farmacologia , Benzoquinonas , Sítios de Ligação , Calorimetria , Sequência Conservada , Cristalografia por Raios X , DNA Girase , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/metabolismo , Lactamas Macrocíclicas , Modelos Moleculares , Modelos Estruturais , Dados de Sequência Molecular , Dobramento de Proteína , Quinonas/farmacologia , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
17.
Nat Struct Biol ; 4(6): 477-82, 1997 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9187656

RESUMO

Hsp90 is a highly specific chaperone for many signal transduction proteins, including steroid hormone receptors and a broad range of protein kinases. The crystal structure of the N-terminal domain of the yeast Hsp90 reveals a dimeric structure based on a highly twisted sixteen stranded beta-sheet, whose topology suggests a possible 30-domain-swapped structure for the intact Hsp90 dimer. The opposing faces of the beta-sheets in the dimer define a potential peptide-binding cleft, suggesting that the N-domain may serve as a molecular 'clamp' in the binding of ligand proteins to Hsp90.


Assuntos
Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Dimerização , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP90/genética , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Dobramento de Proteína , Saccharomyces cerevisiae/química
18.
Cell Stress Chaperones ; 2(1): 12-24, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-9250391

RESUMO

Saccharomyces cerevisiae has a single integral plasma membrane heat shock protein (Hsp). This Hsp30 is induced by several stresses, including heat shock, ethanol exposure, severe osmostress, weak organic acid exposure and glucose limitation. Plasma membrane H(+)-ATPase activities of heat shocked and weak acid-adapted, hsp30 mutant and wild-type cells, revealed that Hsp30 induction leads to a downregulation of the stress-stimulation of this H(+)-ATPase. Plasma membrane H(+)-ATPase activity consumes a substantial fraction of the ATP generated by the cell, a usage that will be increased by the H(+)-ATPase stimulation occurring with several Hsp30-inducing stresses. Hsp30 might therefore provide an energy conservation role, limiting excessive ATP consumption by plasma membrane H(+)-ATPase during prolonged stress exposure or glucose limitation. Consistent with the role of Hsp30 being energy conservation, Hsp30 null cultures give lower final biomass yields. They also have lower ATP levels, consistent with higher H(+)-ATPase activity, at the glucose exhaustion stage of batch fermentations (diauxic lag), when Hsp30 is normally induced. Loss of Hsp30 does not affect several stress tolerances but it extends the time needed for cells to adapt to growth under several stressful conditions where the maintenance of homeostasis will demand an unusually high usage of energy, hsp30 is the first yeast gene identified as both weak organic acid-inducible and assisting the adaptation to growth in the presence of these acids.


Assuntos
Membrana Celular/enzimologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Membrana/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Saccharomyces cerevisiae/metabolismo , Trifosfato de Adenosina/metabolismo , Membrana Celular/química , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Ativação Enzimática , Fermentação/fisiologia , Conservantes de Alimentos/farmacologia , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico HSP30 , Temperatura Alta , Concentração de Íons de Hidrogênio , Pressão Osmótica , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae , Ácido Sórbico/farmacologia
19.
Mol Gen Genet ; 253(4): 439-47, 1997 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-9037103

RESUMO

Carbon and nitrogen regulation of UBI4, the stress-inducible polyubiquitin gene of Saccharomyces cerevisiae, was investigated using a UBI4 promoter-LacZ fusion gene (UBI4-LacZ). Expression of this gene in cells grown on different media indicated that the UBI4 promoter is more active during growth on respiratory than on fermentable carbon sources but is not subject to appreciable control by nitrogen catabolite repression. UBI4-LacZ expression was virtually identical in cells having constitutively high (ras2, sra1-13) or constitutively low (ras2) levels of cyclic AMP-dependent protein kinase activity, indicating that this kinase does not exert a major influence on UBI4 expression. Catabolite derepression control of the UBI4 promoter was confirmed by measurements of UBI4-LacZ expression in hap mutant and wild-type strains before and after transfer from glucose to lactate. Mutagenesis of the perfect consensus for HAP2/3/4 complex binding at position -542 resulted in considerable reduction of UBI4 promoter derepression with respiratory adaptation in HAP wild-type cells and abolished the reduced UBI4-LacZ derepression normally seen when aerobic cultures of the hap1 mutant are transferred from glucose to lactate. This HAP2/3/4 binding site is therefore a major element contributing to catabolite derepression of the UBI4 promoter, although data obtained with hapl mutant cells indicated that HAP1 also contributes to this derepression. The HAP2/3/4 and HAP1 systems are normally found to activate genes for mitochondrial (respiratory) functions. Their involvement in mediating higher activity of the UBI4 promoter during respiratory growth may reflect the contribution of UBI4 expression to tolerance of oxidative stress.


Assuntos
Biopolímeros/genética , Fator de Ligação a CCAAT , Carbono-Oxigênio Liases , DNA Liase (Sítios Apurínicos ou Apirimidínicos) , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Ubiquitinas/genética , Biopolímeros/biossíntese , Sequência Consenso , Meios de Cultura , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Fermentação , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/metabolismo , Genes Fúngicos , Glucose/metabolismo , Proteínas de Choque Térmico/biossíntese , Ácido Láctico/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Estresse Oxidativo , Consumo de Oxigênio , Poliubiquitina , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/biossíntese , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética , Ubiquitinas/biossíntese
20.
Proteins ; 25(4): 517-22, 1996 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8865348

RESUMO

Expression of the Saccharomyces cerevisiae Hsp82 chaperone in a pep4-3- and hsc82-deficient strain of S. cerevisiae yielded over 25% of the total cell protein as intact Hsp82. Similarly, the amino-terminal domain (residues 1-220) of Hsp82 was expressed to 18% of the total cell protein. Crystals of the intact Hsp82 were readily obtained. The crystals were very fragile, suggesting a high solvent content, and diffracted to approximately 8 A. Tetragonal bipyrimidal crystals of the amino-terminal domain of Hsp82 were readily obtained under a variety of different conditions. The crystals have primitive tetragonal space group (P422, P4(1)22, or its enantiomorph P4(3)22) with unit cell dimensions of a = 75.1 A and c = 111.3 A, contain 60% by volume solvent, and diffract to 2.5 A resoltuion. Addition of 25% glycerol to the mother liquor gave rise to large rod-shaped crystals. The crystals diffract to 2.8 A resolution, have an orthorhombic space group (P222(1), P2(1)2(1)2, or P2(1)2(1)2(1)) with cell dimensions of a = 45.2 A, b = 115.4 A, and c = 116.9 A, and a solvent content of 58% by volume.


Assuntos
Proteínas de Choque Térmico/genética , Chaperonas Moleculares/genética , Saccharomyces cerevisiae/genética , Sequência de Aminoácidos , Clonagem Molecular , Escherichia coli/genética , Proteínas de Choque Térmico HSP90 , Proteínas de Choque Térmico/química , Chaperonas Moleculares/química , Dados de Sequência Molecular , Proteínas de Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...