Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 104(4-1): 044404, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34781557

RESUMO

The small-angle neutron scattering (SANS) on HeLa nuclei demonstrates the bifractal nature of the chromatin structural organization. The border line between two fractal structures is detected as a crossover point at Q_{c}≈4×10^{-2}nm^{-1} in the momentum transfer dependence Q^{-D}. The use of contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals clear similarity in the large scale structural organizations of nucleic acids (NA) and proteins. Both NA and protein structures have a mass fractal arrangement with the fractal dimension of D≈2.5 at scales smaller than 150 nm down to 20 nm. Both NA and proteins show a logarithmic fractal behavior with D≈3 at scales larger than 150 nm up to 6000 nm. The combined analysis of the SANS and atomic force microscopy data allows one to conclude that chromatin and its constitutes (DNA and proteins) are characterized as soft, densely packed, logarithmic fractals on the large scale and as rigid, loosely packed, mass fractals on the smaller scale. The comparison of the partial cross sections from NA and proteins with one from chromatin as a whole demonstrates spatial correlation of two chromatin's components in the range up to 900 nm. Thus chromatin in HeLa nuclei is built as the unified structure of the NA and proteins entwined through each other. Correlation between two components is lost upon scale increases toward 6000 nm. The structural features at the large scale, probably, provide nuclei with the flexibility and chromatin-free space to build supercorrelations on the distance of 10^{3} nm resembling cycle cell activity, such as an appearance of nucleoli and a DNA replication.

2.
Phys Rev E ; 104(6-1): 064409, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35030913

RESUMO

The small-angle neutron scattering (SANS) on the rat lymphocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. The scattering intensity from rat lymphocyte nuclei is described by power law Q^{-D} with fractal dimension approximately 2.3 on smaller scales and 3 on larger scales. The crossover between two fractal structures is detected at momentum transfer near 10^{-1}nm^{-1}. The use of contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals clear similarity in the structural organizations of nucleic acids (NA) and proteins. Both chromatin components show bifractal behavior with logarithmic fractal structure on the large scale and volume fractal with slightly smaller than 2.5 structure on the small scale. Scattering intensities from chromatin, protein component, and NA component demonstrate an extremely extensive range of logarithmic fractal behavior (from 10^{-3} to approximately 10^{-1}nm^{-1}). We compare the fractal arrangement of rat lymphocyte nuclei with that of chicken erythrocytes and the immortal HeLa cell line. We conclude that the bifractal nature of the chromatin arrangement is inherent in the nuclei of all these cells. The details of the fractal arrangement-its range and correlation/interaction between nuclear acids and proteins are specific for different cells and is related to their functionality.

3.
Phys Rev E ; 102(3-1): 032415, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33075965

RESUMO

The small-angle neutron scattering (SANS) on the chicken erythrocyte nuclei demonstrates the bifractal nature of the chromatin structural organization. Use of the contrast variation (D_{2}O-H_{2}O) in SANS measurements reveals the differences in the DNA and protein arrangements inside the chromatin substance. It is the DNA that serves as a framework that constitutes the bifractal behavior showing the mass fractal properties with D=2.22 at a smaller scale and the logarithmic fractal behavior with D≈3 at a larger scale. The protein spatial organization shows the mass fractal properties with D≈2.34 throughout the whole nucleus. The borderline between two fractal levels can be significantly shifted toward smaller scales by centrifugation of the nuclei disposed on the dry substrate, since nuclei suffer from mechanical stress transforming them to a disklike shape. The height of this disk measured by atomic force microscopy (AFM) coincides closely with the fractal borderline, thus characterizing two types of the chromatin with the soft (at larger scale) and rigid (at smaller scale) properties. The combined SANS and AFM measurements demonstrate the stress induced switch of the DNA fractal properties from the rigid, but loosely packed, mass fractal to the soft, but densely packed, logarithmic fractal.


Assuntos
Núcleo Celular/genética , DNA/metabolismo , Eritrócitos/citologia , Fractais , Estresse Mecânico , Animais , Fenômenos Biomecânicos , Galinhas , Microscopia de Força Atômica , Modelos Biológicos
4.
Nat Commun ; 7: 12268, 2016 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-27464840

RESUMO

Storage of anthropogenic CO2 in geological formations relies on a caprock as the primary seal preventing buoyant super-critical CO2 escaping. Although natural CO2 reservoirs demonstrate that CO2 may be stored safely for millions of years, uncertainty remains in predicting how caprocks will react with CO2-bearing brines. This uncertainty poses a significant challenge to the risk assessment of geological carbon storage. Here we describe mineral reaction fronts in a CO2 reservoir-caprock system exposed to CO2 over a timescale comparable with that needed for geological carbon storage. The propagation of the reaction front is retarded by redox-sensitive mineral dissolution reactions and carbonate precipitation, which reduces its penetration into the caprock to ∼7 cm in ∼10(5) years. This distance is an order-of-magnitude smaller than previous predictions. The results attest to the significance of transport-limited reactions to the long-term integrity of sealing behaviour in caprocks exposed to CO2.

5.
Nat Commun ; 6: 8813, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26522610

RESUMO

Alike materials in the solid state, the phase diagram of type-II superconductors exhibit crystalline, amorphous, liquid and spatially inhomogeneous phases. The multitude of different phases of vortex matter has thence proven to act as almost ideal model system for the study of both the underlying properties of superconductivity but also of general phenomena such as domain nucleation and morphology. Here we show how neutron grating interferometry yields detailed information on the vortex lattice and its domain structure in the intermediate mixed state of a type-II niobium superconductor. In particular, we identify the nucleation regions, how the intermediate mixed state expands, and where it finally evolves into the Shubnikov phase. Moreover, we complement the results obtained from neutron grating interferometry by small-angle neutron scattering that confirm the spatially resolved morphology found in the intermediate mixed state, and very small-angle neutron scattering that confirm the domain structure of the vortex lattice.

6.
Langmuir ; 30(50): 15072-82, 2014 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-25458085

RESUMO

Bovine serum albumin (BSA) coated on citrate capped gold nanoparticles (BSA-GNPs) was exposed to a simulated wastewater effluent (SSE) in order to study the mineralization and thereby mimic scaling at biofouled membranes of reverse osmosis (RO) wastewater desalination plants. RO is a leading technology of achieving freshwater quality as it has the capability of removing both dissolved inorganic salts and organic contaminants from tertiary wastewater effluents. The aim was to better understand one of the major problems facing this technology which is fouling of the membranes, mainly biofouling and scaling by calcium phosphate. The experiments were performed using the small-angle neutron scattering (SANS) technique. The nanoparticles, GNPs, stabilized by the citrate groups showed 30 Å large particles having a homogeneous distribution of gold and citrate with a gold volume fraction of the order of 1%. On the average two BSA monomers are grafted at 2.4 GNPs. The exposed BSA-GNPs to SSE solution led to immediate mineralization of stable composite particles of the order of 0.2 µm diameter and a mineral volume fraction between 50% and 80%. The volume fraction of the mineral was of the order of 10(-5), which is roughly 3 times larger but an order of magnitude smaller than the maximum possible contents of respectively calcium phosphate and calcium carbonate in the SSE solution. Considering the extreme low solubility product of calcium phosphate, we suggest total calcium phosphate and partially (5-10%) calcium carbonate formation in the presence of BSA-GNPs.


Assuntos
Ouro/química , Membranas Artificiais , Minerais/isolamento & purificação , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Soroalbumina Bovina/química , Águas Residuárias/química , Animais , Bovinos , Citratos/química , Óxido de Deutério/química , Nanopartículas Metálicas/química , Osmose , Propriedades de Superfície , Eliminação de Resíduos Líquidos
7.
Langmuir ; 30(33): 9985-90, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25084807

RESUMO

The structure of deterministically nanopatterned surfaces created using a combination of electron beam lithography and reactive ion etching was evaluated using small-angle neutron scattering (SANS). Samples exhibit 2D neutron scattering patterns that confirm the presence of ordered nanoscale cavities consistent with the targeted morphologies as well as with SEM data analysis. Comparison of SANS intensities obtained from samples in air and in contact with an aqueous phase (pure deuterium oxide, D2O, or a contrast matched mixture of D2O + H2O) reveals formation of stable gaseous nanobubbles trapped inside the cavities. The relative volume of nanobubbles depends strongly on the hydrophobicity of the cavity walls. In the case of hydrophobic surfaces, nanobubbles occupy up to 87% of the total cavity volume. The results demonstrate the high degree of sensitivity of SANS measurements for detecting and characterizing nano- and mesoscale bubbles with the volume fraction as low as ∼10(-6).

8.
Phys Chem Chem Phys ; 14(7): 2483-93, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22249363

RESUMO

During protein crystallization and purification, proteins are commonly found in concentrated salt solutions. The exact interplay of the hydration shell, the salt ions, and protein-protein interactions under these conditions is far from being understood on a fundamental level, despite the obvious practical relevance. We have studied a model globular protein (bovine serum albumin, BSA) in concentrated salt solutions by small-angle neutron scattering (SANS). The data are also compared to previous studies using SAXS. The SANS results for dilute protein solutions give an averaged volume of BSA of 91,700 Å(3), which is about 37% smaller than that determined by SAXS. The difference in volume corresponds to the contribution of a hydration shell with a hydration level of 0.30 g g(-1) protein. The forward intensity I(0) determined from Guinier analysis is used to determine the second virial coefficient, A(2), which describes the overall protein interactions in solution. It is found that A(2) follows the reverse order of the Hofmeister series, i.e. (NH(4))(2)SO(4) < Na(2)SO(4) < NaOAc < NaCl < NaNO(3) < NaSCN. The dimensionless second virial coefficient B(2), corrected for the particle volume and molecular weight, has been calculated using different approaches, and shows that B(2) with corrections for hydration and the non-spherical shape of the protein describes the interactions better than those determined from the bare protein. SANS data are further analyzed in the full q-range using liquid theoretical approaches, which gives results consistent with the A(2) analysis and the experimental structure factor.


Assuntos
Eletrólitos/química , Soroalbumina Bovina/química , Animais , Bovinos , Difração de Nêutrons , Concentração Osmolar , Mapeamento de Interação de Proteínas , Sais/química , Espalhamento a Baixo Ângulo , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA