Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 30(2): 1860-1874, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35209339

RESUMO

The control of laser-induced microcracks in the volume of transparent materials is essential for scribing processes. In this paper, we investigate the effect of various amplitude and single-level phase masks on both transverse and axial intensity distribution of the conventional axicon-generated Bessel beams. Furthermore, we demonstrate the volumetric crack control induced by an asymmetrical central core with an appropriately selected intensity level to avoid the influence of peripheral intensity maxima. Proper alignment of cracks and intra-distance between the modifications results in the reduced separation stress of the scribed samples. Furthermore, the additional amplitude modulation of the incident Gaussian beam is introduced to flatten the axial intensity distribution of the axicon-generated Bessel beam.

2.
Opt Express ; 28(21): 32133-32151, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115177

RESUMO

With the development of industrial lasers and novel glass processing techniques, which offer high speed, quality and precision, this becomes an attractive alternative to conventional methods, such as mechanical scribing and cleaving, diamond saw and waterjet cutting, commonly used in the industry. However, the emerging techniques lack thorough validation with respect to well-established methods. To this end, we present a detailed comparison of different glass cutting methods, taking into account surface quality, side-wall roughness, residual stresses and flexural strength. In addition, samples were examined after fracture, and the flexural strength was estimated according to the quarter elliptical corner flaws, which were the main reason of glass failure. Two laser glass processing techniques were investigated - the rear-side glass processing with tightly focused nanosecond laser pulses and sub-nanosecond laser volumetric scribing with asymmetrical Bessel beam. Results were compared to mechanical scribing and breaking, diamond saw and waterjet cutting.

3.
Opt Express ; 28(4): 5715-5730, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32121787

RESUMO

Laser-based fabrication can be an alternative technology to mechanical grinding and polishing processes. However, the performance of these elements in real applications still needs to be validated. In this paper, we demonstrate that the subtractive fabrication technology is able to produce high-quality axicons from fused silica, which can be efficiently used for glass processing. We comprehensively investigate axicons, fabricated by ultrashort pulsed laser ablation with subsequent CO2 laser polishing, and compare their performance with commercially available axicons. We show that laser-fabricated axicons are comparable in quality with a precision commercial axicon. Furthermore, we demonstrate the intra-volume glass modification and dicing, utilising mJ-level laser pulses. We show that the tilting operation of the laser-fabricated axicons results in the formation of directional transverse cracks, which significantly enhance the 1 mm-thick glass dicing process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...