Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Med Inform Assoc ; 31(4): 919-928, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341800

RESUMO

OBJECTIVES: We conducted an implementation planning process during the pilot phase of a pragmatic trial, which tests an intervention guided by artificial intelligence (AI) analytics sourced from noninvasive monitoring data in heart failure patients (LINK-HF2). MATERIALS AND METHODS: A mixed-method analysis was conducted at 2 pilot sites. Interviews were conducted with 12 of 27 enrolled patients and with 13 participating clinicians. iPARIHS constructs were used for interview construction to identify workflow, communication patterns, and clinician's beliefs. Interviews were transcribed and analyzed using inductive coding protocols to identify key themes. Behavioral response data from the AI-generated notifications were collected. RESULTS: Clinicians responded to notifications within 24 hours in 95% of instances, with 26.7% resulting in clinical action. Four implementation themes emerged: (1) High anticipatory expectations for reliable patient communications, reduced patient burden, and less proactive provider monitoring. (2) The AI notifications required a differential and tailored balance of trust and action advice related to role. (3) Clinic experience with other home-based programs influenced utilization. (4) Responding to notifications involved significant effort, including electronic health record (EHR) review, patient contact, and consultation with other clinicians. DISCUSSION: Clinician's use of AI data is a function of beliefs regarding the trustworthiness and usefulness of the data, the degree of autonomy in professional roles, and the cognitive effort involved. CONCLUSION: The implementation planning analysis guided development of strategies that addressed communication technology, patient education, and EHR integration to reduce clinician and patient burden in the subsequent main randomized phase of the trial. Our results provide important insights into the unique implications of implementing AI analytics into clinical workflow.


Assuntos
Inteligência Artificial , Insuficiência Cardíaca , Humanos , Instituições de Assistência Ambulatorial , Comunicação , Insuficiência Cardíaca/terapia , Tecnologia da Informação
2.
Biomed Sci Instrum ; 50: 219-24, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25405427

RESUMO

UNLABELLED: Background. Monitoring cardiovascular hemodynamics in the modern clinical setting is a major challenge. Increasing amounts of physiologic data must be analyzed and interpreted in the context of the individual patient’s pathology and inherent biologic variability. Certain data-driven analytical methods are currently being explored for smart monitoring of data streams from patients as a first tier automated detection system for clinical deterioration. As a prelude to human clinical trials, an empirical multivariate machine learning method called Similarity-Based Modeling (“SBM”), was tested in an In Silico experiment using data generated with the aid of a detailed computer simulator of human physiology (Quantitative Circulatory Physiology or “QCP”) which contains complex control systems with realistic integrated feedback loops. Methods. SBM is a kernel-based, multivariate machine learning method that that uses monitored clinical information to generate an empirical model of a patient’s physiologic state. This platform allows for the use of predictive analytic techniques to identify early changes in a patient’s condition that are indicative of a state of deterioration or instability. The integrity of the technique was tested through an In Silico experiment using QCP in which the output of computer simulations of a slowly evolving cardiac tamponade resulted in progressive state of cardiovascular decompensation. Simulator outputs for the variables under consideration were generated at a 2-min data rate (0.083Hz) with the tamponade introduced at a point 420 minutes into the simulation sequence. The functionality of the SBM predictive analytics methodology to identify clinical deterioration was compared to the thresholds used by conventional monitoring methods. Results. The SBM modeling method was found to closely track the normal physiologic variation as simulated by QCP. With the slow development of the tamponade, the SBM model are seen to disagree while the simulated biosignals in the early stages of physiologic deterioration and while the variables are still within normal ranges. Thus, the SBM system was found to identify pathophysiologic conditions in a timeframe that would not have been detected in a usual clinical monitoring scenario. Conclusion. In this study the functionality of a multivariate machine learning predictive methodology that that incorporates commonly monitored clinical information was tested using a computer model of human physiology. SBM and predictive analytics were able to differentiate a state of decompensation while the monitored variables were still within normal clinical ranges. This finding suggests that the SBM could provide for early identification of a clinical deterioration using predictive analytic techniques. KEYWORDS: predictive analytics, hemodynamic, monitoring.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...