Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Front Public Health ; 12: 1336518, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38532975

RESUMO

Predicting and understanding thorax injury is fundamental for the assessment and development of safety systems to mitigate injury risk to the increasing and vulnerable aged population. While computational human models have contributed to the understanding of injury biomechanics, contemporary human body models have struggled to predict rib fractures and explain the increased incidence of injury in the aged population. The present study enhanced young and aged human body models (HBMs) by integrating a biofidelic cortical bone constitutive model and population-based bone material properties. The HBMs were evaluated using side impact sled tests assessed using chest compression and number of rib fractures. The increase in thoracic kyphosis and the associated change in rib angle with increasing age, led to increased rib torsional moment increasing the rib shear stress. Coupled with and improved cortical bone constitutive model and aged material properties, the higher resulting shear stress led to an increased number of rib fractures in the aged model. The importance of shear stress resulting from torsional load was further investigated using an isolated rib model. In contrast, HBM chest compression, a common thorax injury-associated metric, was insensitive to the aging factors studied. This study proposes an explanation for the increased incidence of thorax injury with increasing age reported in epidemiological data, and provides an enhanced understanding of human rib mechanics that will benefit assessment and design of future safety systems.


Assuntos
Fraturas das Costelas , Humanos , Feminino , Idoso , Fraturas das Costelas/etiologia , Acidentes de Trânsito , Tórax , Fenômenos Biomecânicos , Fatores Etários
2.
J Biomech Eng ; 146(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38217111

RESUMO

Variability in body shape and soft tissue geometry have the potential to affect the body's interaction with automotive safety systems. In this study, we developed a methodology to capture information on body shape, superficial soft tissue geometry, skeletal geometry, and seatbelt fit relative to the skeleton-in automotive postures-using Open Magnetic Resonance Imaging (MRI). Volunteer posture and belt fit were first measured in a vehicle and then reproduced in a custom MRI-safe seat (with an MR-visible seatbelt) placed in an Open MR scanner. Overlapping scans were performed to create registered three-dimensional reconstructions spanning from the thigh to the clavicles. Data were collected with ten volunteers (5 female, 5 male), each in their self-selected driving posture and in a reclined posture. Examination of the MRIs showed that in the males with substantial anterior abdominal adipose tissue, the abdominal adipose tissue tended to overhang the pelvis, narrowing in the region of the Anterior Superior Iliac Spine (ASIS). For the females, the adipose tissue depth around the lower abdomen and pelvis was more uniform, with a more continuous layer superficial to the ASIS. Across the volunteers, the pelvis rotated rearward by an average of 62% of the change in seatback angle during recline. In some cases, the lap belt drew nearer to the pelvis as the volunteer reclined (as the overhanging folds of adipose tissue stretched). In others, the belt-to-pelvis distance increased as the volunteer reclined. These observations highlight the importance of considering both interdemographic and intrademographic variability when developing tools to assess safety system robustness.


Assuntos
Acidentes de Trânsito , Somatotipos , Humanos , Masculino , Feminino , Voluntários , Pelve , Postura , Fenômenos Biomecânicos
3.
Traffic Inj Prev ; 25(2): 182-193, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38095596

RESUMO

OBJECTIVES: Vulnerable road users are globally overrepresented as victims of road traffic injuries. Developing biofidelic male and female pedestrian human body models (HBMs) that represent diverse anthropometries is essential to enhance road safety and propose intervention strategies. METHODS: In this study, 50th percentile male and female pedestrians of the SAFER HBM were developed via a newly developed image registration-based mesh morphing framework. The performance of the HBMs was evaluated by means of a set of cadaver experiments, involving subjects struck laterally by a generic sedan buck. RESULTS: In simulated whole-body pedestrian collisions, the personalized HBMs effectively replicate trajectories of the head and lower body regions, as well as head kinematics, in lateral impacts. The results also demonstrate the personalization framework's capacity to generate personalized HBMs with reliable mesh quality, ensuring robust simulations. CONCLUSIONS: The presented pedestrian HBMs and personalization framework provide robust means to reconstruct and evaluate head impacts in pedestrian-to-vehicle collisions thoroughly and accurately.


Assuntos
Acidentes de Trânsito , Pedestres , Humanos , Masculino , Feminino , Corpo Humano , Modelos Biológicos , Fenômenos Biomecânicos , Caminhada/lesões
4.
J Biomech Eng ; 146(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37943113

RESUMO

The injury risk in a vehicle crash can depend on occupant specific factors. Virtual crash testing using finite element human body models (HBMs) to represent occupant variability can enable the development of vehicles with improved safety for all occupants. In this study, it was investigated how many HBMs of different sizes that are needed to represent a population crash outcome through a metamodel. Rib fracture risk was used as an example occupant injury outcome. Morphed HBMs representing variability in sex, height, and weight within defined population ranges were used to calculate population variability in rib fracture risk in a frontal and a side crash. Two regression methods, regularized linear regression with second-order terms and Gaussian process regression (GPR), were used to metamodel rib fracture risk due to occupant variability. By studying metamodel predictive performance as a function of training data, it was found that constructing GPR metamodels using 25 individuals of each sex appears sufficient to model the population rib fracture risk outcome in a general crash scenario. Further, by utilizing the known outcomes in the two crashes, an optimization method selected individuals representative for population outcomes across both crash scenarios. The optimization results showed that 5-7 individuals of each sex were sufficient to create predictive GPR metamodels. The optimization method can be extended for more crashes and vehicles, which can be used to identify a family of HBMs that are generally representative of population injury outcomes in future work.


Assuntos
Fraturas das Costelas , Ferimentos e Lesões , Humanos , Acidentes de Trânsito , Corpo Humano , Risco
5.
Traffic Inj Prev ; 24(sup1): S23-S31, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37267001

RESUMO

OBJECTIVE: In 2020, 17% of all crash fatalities were individuals aged 65 years or older. Crash data also revealed that for older occupants, thoracic related injuries are among the leading causes of fatality. Historically, the majority of near-side impact postmortem human subjects (PMHS) studies used a generic load wall to capture external loads that were applied to PMHS. While these data were helpful in documenting biofidelity, they did not represent a realistic response an occupant would undergo in a near-side crash. The objective of this research was to test small, elderly female PMHS in a repeatable, realistic near-side impact crash scenario to investigate current injury criteria as they relate to this vulnerable population. METHOD: Ten small, elderly PMHS were subjected to a realistic near-side impact loading condition. The PMHS were targeted to be elderly females age 60+, approximately 5th percentile in height and weight, with osteopenic areal bone mineral density. Each subject was seated on a mass-production seat, equipped with a side airbag and standard three-point restraint with a pretensioner. Other boundary conditions included an intruding driver's side door. PMHS instrumentation included strain gages on ribs 3-10 bilaterally to identify fracture timing. Two chestbands were used to measure chest deflection, one at the level of the axilla and one at the level of the xiphoid process. RESULTS: Injuries observed included rib fractures, particularly on the struck side, and in multiple cases a flail chest was observed. Eight of ten subjects resulted in AIS3+ thoracic injuries, despite previously tested ATDs predicting less than a 10% chance of AIS3+ injury. Subjects crossed the threshold for AIS3 injury in the range of only 1% - 9% chest compression. Additionally, mechanisms of injury varied, as some injuries were incurred by door interactions while others came during airbag interactions. CONCLUSIONS: This research points to two areas of concern that likely require further analysis: (1) the appropriateness of potentially oversimplified PMHS testing to establish injury thresholds and define injury criteria for complicated crash scenarios; (2) the importance of identifying the precise timing of injuries to better understand the effect of current passive restraint systems.


Assuntos
Air Bags , Fraturas das Costelas , Traumatismos Torácicos , Idoso , Feminino , Humanos , Acidentes de Trânsito , Air Bags/efeitos adversos , Fenômenos Biomecânicos , Cadáver , Fraturas das Costelas/epidemiologia , Fraturas das Costelas/etiologia , Traumatismos Torácicos/epidemiologia , Traumatismos Torácicos/etiologia , Pessoa de Meia-Idade
6.
Front Bioeng Biotechnol ; 11: 1169365, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37274163

RESUMO

Finite element human body models (HBMs) are becoming increasingly important numerical tools for traffic safety. Developing a validated and reliable HBM from the start requires integrated efforts and continues to be a challenging task. Mesh morphing is an efficient technique to generate personalized HBMs accounting for individual anatomy once a baseline model has been developed. This study presents a new image registration-based mesh morphing method to generate personalized HBMs. The method is demonstrated by morphing four baseline HBMs (SAFER, THUMS, and VIVA+ in both seated and standing postures) into ten subjects with varying heights, body mass indices (BMIs), and sex. The resulting personalized HBMs show comparable element quality to the baseline models. This method enables the comparison of HBMs by morphing them into the same subject, eliminating geometric differences. The method also shows superior geometry correction capabilities, which facilitates converting a seated HBM to a standing one, combined with additional positioning tools. Furthermore, this method can be extended to personalize other models, and the feasibility of morphing vehicle models has been illustrated. In conclusion, this new image registration-based mesh morphing method allows rapid and robust personalization of HBMs, facilitating personalized simulations.

7.
Front Bioeng Biotechnol ; 11: 1154272, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37034266

RESUMO

Rib fractures remain a common injury for vehicle occupants in crashes. The risk of a human sustaining rib fractures from thorax loading is highly variable, potentially due to a variability in individual factors such as material properties and geometry of the ribs and ribcage. Human body models (HBMs) with a detailed ribcage can be used as occupant substitutes to aid in the prediction of rib injury risk at the tissue level in crash analysis. To improve this capability, model parametrization can be used to represent human variability in simulation studies. The aim of this study was to identify the variations in the physical properties of the human thorax that have the most influence on rib fracture risk for the population of vehicle occupants. A total of 15 different geometrical and material factors, sourced from published literature, were varied in a parametrized SAFER HBM. Parametric sensitivity analyses were conducted for two crash configurations, frontal and near-side impacts. The results show that variability in rib cortical bone thickness, rib cortical bone material properties, and rib cross-sectional width had the greatest influence on the risk for an occupant to sustain two or more fractured ribs in both impacts. Therefore, it is recommended that these three parameters be included in rib fracture risk analysis with HBMs for the population of vehicle occupants.

8.
Front Bioeng Biotechnol ; 11: 1106554, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36860885

RESUMO

Introduction: Chest deformation has been proposed as the best predictor of thoracic injury risk in frontal impacts. Finite Element Human Body Models (FE-HBM) can enhance the results obtained in physical crash tests with Anthropometric Test Devices (ATD) since they can be exposed to omnidirectional impacts and their geometry can be modified to reflect specific population groups. This study aims to assess the sensitivity of two thoracic injury risk criteria (PC Score and Cmax) to several personalization techniques of FE-HBMs. Methods: Three 30° nearside oblique sled tests were reproduced using the SAFER HBM v8 and three personalization techniques were applied to this model to evaluate the influence on the risk of thoracic injuries. First, the overall mass of the model was adjusted to represent the weight of the subjects. Second, the model anthropometry and mass were modified to represent the characteristics of the post-mortem human subjects (PMHS). Finally, the spine alignment of the model was adapted to the PMHS posture at t = 0 ms, to conform to the angles between spinal landmarks measured in the PMHS. The following two metrics were used to predict three or more fractured ribs (AIS3+) of the SAFER HBM v8 and the effect of personalization techniques: the maximum posterior displacement of any studied chest point (Cmax), and the sum of the upper and lower deformation of selected rib points (PC score). Results: Despite having led to statistically significant differences in the probability of AIS3+ calculations, the mass-scaled and morphed version provided, in general, lower values for injury risk than the baseline model and the postured version being the latter, which exhibited the better approximation to the PMHS tests in terms of probability of injury. Additionally, this study found that the prediction of AIS3+ chest injuries based on PC Score resulted in higher probability values than the prediction based on Cmax for the loading conditions and personalization techniques analyzed within this study. Discussion: This study could demonstrate that the personalization techniques do not lead to linear trends when they are used in combination. Furthermore, the results included here suggest that these two criteria will result in significantly different predictions if the chest is loaded more asymmetrically.

9.
Ann Biomed Eng ; 51(6): 1216-1225, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36681746

RESUMO

Anticipating changes to vehicle interiors with future automated driving systems, the automobile industry recently has focused attention on crash response in novel postures with increased seatback recline. Prior research found that this posture may result in greater risk of lumbar spine injury in the event of a frontal crash. This study developed a lumbar spine injury risk function (IRF) that estimated injury risk as a function of simultaneously applied compression force and flexion moment. Force and moment failure data from 40 compression-flexion tests were utilized in a Weibull survival model, including appropriate data censoring. A mechanics-based injury metric was formulated, where lumbar spine compression force and flexion moment were normalized by specimen geometry. Subject age was incorporated as a covariate to further improve model fit. A weighting factor was included to adjust the influence of force and moment, and parameter optimization yielded a value of 0.11. Thus, the normalized compression force component had a greater effect on injury risk than the normalized flexion moment component. Additionally, as force was nominally increased, less moment was required to produce injury for a given age and specimen geometry. The resulting IRF may be utilized to improve occupant safety in the future.


Assuntos
Acidentes de Trânsito , Traumatismos da Coluna Vertebral , Humanos , Automóveis , Vértebras Lombares/fisiologia , Fenômenos Biomecânicos
10.
Traffic Inj Prev ; 24(1): 69-74, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512330

RESUMO

Objective: The objective of this study is to analyze the 6 degrees of freedom (DOF) motion of the spine using the finite helical axis (FHA) in three postmortem human surrogates (PMHS) sled tests.Methods: The sled test configurations corresponded to a 30° nearside oblique impact at 35 km/h. Two different restraint system versions (RSv) were used. RSv1 was used for PMHS A and B while RSv2 was used for PMHS C. The 6 DOF motion of the head and three selected vertebrae have been analyzed using the FHA which describes the 3 D motion of a rigid body between two instants of time as a rotation about and a translation along a unit vector. A minimal amount of rotation is necessary to the FHA calculation, thus the FHA components have been calculated based on a pre-defined interval of 8° of rotation.Results: The analysis of the FHA components demonstrated right lateral bending until around 100 ms, when the rebound phase was reached and the head and the lower spine undergoes left lateral bending. The three PMHS exhibited, in general, flexion movement of the whole body and torsion to the right side of the occupant. This general motion can be associated to the effect of the seatbelt acting as a fulcrum of the rotational movement of the bony landmarks. The interaction of the PMHS with the retention system can be noted by analyzing the time in which the head and the upper spine initiated the rotation and the sudden changes of rotational direction of the three PMHS's head.Conclusions: The rotational analyses have shown to be more sensitive to experimental events than the trajectory analyses for the studied physical tests. Additionally, the results presented in the present study contributes to the analysis of the body kinematics during an oblique impact and adds new experimental data for Human Body Models (HBM) and Anthropometric Test Devices (ATD) benchmarking.


Assuntos
Aceleração , Acidentes de Trânsito , Humanos , Cadáver , Coluna Vertebral , Rotação , Fenômenos Biomecânicos
11.
Front Bioeng Biotechnol ; 11: 1313543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38283169

RESUMO

Objective: Real-life car crashes are often preceded by an evasive maneuver, which can alter the occupant posture and muscle state. To simulate the occupant response in such maneuvers, human body models (HBMs) with active muscles have been developed. The aim of this study was to implement an omni-directional rotational head-neck muscle controller in the SAFER HBM and compare the bio-fidelity of the HBM with a rotational controller to the HBM with a translational controller, in simulations of evasive maneuvers. Methods: The rotational controller was developed using an axis-angle representation of head rotations, with x, y, and z components in the axis. Muscle load sharing was based on rotational direction in the simulation and muscle activity recorded in three volunteer experiments in these directions. The gains of the rotational and translational controller were tuned to minimize differences between translational and rotational head displacements of the HBM and volunteers in braking and lane change maneuvers using multi-objective optimizations. Bio-fidelity of the model with tuned controllers was evaluated objectively using CORrelation and Analysis (CORA). Results: The results indicated comparable performance for both controllers after tuning, with somewhat higher bio-fidelity for rotational kinematics with the translational controller. After tuning, good or excellent bio-fidelity was indicated for both controllers in the loading direction (forward in braking, and lateral in lane change), with CORA scores of 0.86-0.99 and 0.93-0.98 for the rotational and translational controllers, respectively. For rotational displacements, and translational displacements in the other directions, bio-fidelity ranged from poor to excellent, with slightly higher average CORA scores for the HBM with the translational controller in both braking and lane changing. Time-averaged muscle activity was within one standard deviation of time-averaged muscle activity from volunteers. Conclusion: Overall, the results show that when tuned, both the translational and rotational controllers can be used to predict the occupant response to an evasive maneuver, allowing for the inclusion of evasive maneuvers prior to a crash in evaluation of vehicle safety. The rotational controller shows potential in controlling omni-directional head displacements, but the translational controller outperformed the rotational controller. Thus, for now, the recommendation is to use the translational controller with tuned gains.

12.
J Biomech ; 135: 111051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325753

RESUMO

Vehicle safety systems have substantially decreased motor vehicle crash-related injuries and fatalities, but injuries to the lumbar spine still have been reported. Experimental and computational analyses of upright and, particularly, reclined occupants in frontal crashes have shown that the lumbar spine can be subjected to simultaneous and out-of-phase combined axial compression and flexion loading. Lumbar spine failure tolerance in combined compression-flexion has not been widely explored in the literature. Therefore, the goal of this study was to measure the failure tolerance of the lumbar spine in combined compression and flexion. Forty lumbar spine segments with three vertebrae (one unconstrained) and two intervertebral discs (both unconstrained) were pre-loaded with axial compression (2200N, 3300N, or 4500N) and then subjected to rotation-controlled dynamic flexion bending until failure. Clinically relevant middle vertebra fractures were observed in twenty-one of the specimens, including compression and burst fractures. The remaining nineteen specimens experienced failure at the potting-grip interface. Failure tolerance varied within the sample and were categorized by the appropriate data censoring, with clinically relevant middle vertebrae fractures characterized as uncensored or left-censored and potting-grip fractures characterized as right-censored. Average failure force and moment were 3290N (range: 1580N to 5042N) and 51Nm (range: 0Nm to 156 Nm) for uncensored data, 3686N (range: 3145N to 4112N) and 0Nm for left-censored data, and 3470N (range: 2138N to 5062N) and 101Nm (range: 27Nm to 182Nm) for right-censored data. These data can be used to develop and improve injury prediction tools for lumbar spine fractures and further research in future safety systems.


Assuntos
Vértebras Lombares , Fraturas da Coluna Vertebral , Acidentes de Trânsito , Fenômenos Biomecânicos , Humanos , Amplitude de Movimento Articular
13.
Traffic Inj Prev ; 23(4): 181-186, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35201949

RESUMO

OBJECTIVE: The present study has three objectives: First, to analyze the chest deflection measured in nearside oblique tests performed with three post mortem human subjects (PMHS). Second, to assess the capability of a HBM to predict the chest deflection sustained by the PMHS. Third to evaluate the influence on chest deflection prediction of subject-specific HBM. METHODS: Three dimensional chest deformation of five anterior chest landmarks was extracted from three PMHS (A-C) in three sled tests. The sled test configurations corresponded to a 30 degree nearside oblique impact at 35 km/h. Two different restraint system versions (RSv) were used. RSv1 was used for PMHS A and B while RSv2 was used for PMHS C. The capability of the SAFER HBM (called baseline model) to predict PMHS chest deflection was benchmarked by means of the PMHS test results. In a second step, the anthropometry, mass and pre-impact posture of the baseline HBM were modified to the PMHS-specific characteristics to develop a model to assess the influence of personalization techniques in the capability of the human body model to predict PMHS chest deflection. RESULTS: In the sled tests, the measured sternum compression relative to the eighth thoracic vertebra in the PMHS tests was 49, 54 and 55 millimeters respectively. The HBM baseline model predicted 48%, 43% and 34% of the deflections measured in the PMHS tests, while the personalized version predicted 38%, 34% and 28%. When chest deflection was analyzed in x-, y- and z-direction for the five chest landmarks it was found that neither the baseline HBM nor the personalized model predicted x, y and z axis deflections. CONCLUSIONS: The PMHS in situ chest deflection was found to be sensitive to the variation in restraint system and the three PMHS exhibited greater values of lower right chest deflection compared to what was found in available literature. The baseline HBM underpredicted peak chest deflection obtained in the PMHS test. The personalized model was not capable of predicting the chest deflection sustained by the PMHS. Hence, further biofidelity investigations have to be carried out on the human body thorax model for oblique loading.


Assuntos
Acidentes de Trânsito , Corpo Humano , Fenômenos Biomecânicos , Cadáver , Humanos , Sujeitos da Pesquisa , Tórax
14.
Comput Methods Biomech Biomed Engin ; 25(10): 1125-1155, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34843416

RESUMO

Morphing can be used to alter human body models (HBMs) to represent a diverse population of occupants in car crashes. The mid-sized male SAFER HBM v9 was parametrically morphed to match 22 Post Mortem Human Subjects, loaded in different configurations. Kinetics and kinematics were compared for the morphed and baseline HBMs. In frontal impacts, the morphed HBMs correlated closer with the kinematics of obese subjects, but lower to small females. In lateral impacts HBM responses were too stiff. This study outlines a necessary evaluation of all HBMs that should be morphed to represent the diverse population in vehicle safety evaluations.


Assuntos
Acidentes de Trânsito , Corpo Humano , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Obesidade
15.
Traffic Inj Prev ; 23(sup1): S199-S201, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37014196

RESUMO

OBJECTIVE: Poor seat belt fit can result in submarining behavior and injuries to the lower extremity and abdomen. While previous studies have explored seat belt fit relative to skeletal landmarks using palpation, medical imaging remains the gold standard for visualizing and locating skeletal landmarks and soft tissues. The goal of this study was to create a method to image automotive postures and seat belt fit from the pelvis to the clavicle using an Upright Open MRI. METHODS: The posture and belt fit of 10 volunteers (5M, 5F) were measured in an Acura TLX in each subject's preferred driving posture and a standard reclined posture, and then reproduced in a custom non-ferromagnetic seat replica in the MR scanner with an MRI-visible seat belt. The MRI sequence and coil placement were designed to yield clear visualization of bone, soft tissue borders, and the seat belt markers in separate scans of the pelvis, lumbar, thoracolumbar, and thoracic regions. A process was developed to precisely register the scans, and methods for digitizing spinal and pelvic landmarks were established to quantify belt fit. CONCLUSIONS: This method creates opportunities to study variation in seat belt fit in different automotive postures, for occupants of different sexes, ages, BMIs, anthropometries, and for pregnant occupants.


Assuntos
Condução de Veículo , Cintos de Segurança , Humanos , Acidentes de Trânsito , Posição Ortostática , Imageamento por Ressonância Magnética
16.
Front Bioeng Biotechnol ; 9: 677768, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34109166

RESUMO

To evaluate vehicle occupant injury risk, finite element human body models (HBMs) can be used in vehicle crash simulations. HBMs can predict tissue loading levels, and the risk for fracture can be estimated based on a tissue-based risk curve. A probabilistic framework utilizing an age-adjusted rib strain-based risk function was proposed in 2012. However, the risk function was based on tests from only twelve human subjects. Further, the age adjustment was based on previous literature postulating a 5.1% decrease in failure strain for femur bone material per decade of aging. The primary aim of this study was to develop a new strain-based rib fracture risk function using material test data spanning a wide range of ages. A second aim was to update the probabilistic framework with the new risk function and compare the probabilistic risk predictions from HBM simulations to both previous HBM probabilistic risk predictions and to approximate real-world rib fracture outcomes. Tensile test data of human rib cortical bone from 58 individuals spanning 17-99 years of ages was used. Survival analysis with accelerated failure time was used to model the failure strain and age-dependent decrease for the tissue-based risk function. Stochastic HBM simulations with varied impact conditions and restraint system settings were performed and probabilistic rib fracture risks were calculated. In the resulting fracture risk function, sex was not a significant covariate-but a stronger age-dependent decrease than previously assumed for human rib cortical bone was evident, corresponding to a 12% decrease in failure strain per decade of aging. The main effect of this difference is a lowered risk prediction for younger individuals than that predicted in previous risk functions. For the stochastic analysis, the previous risk curve overestimated the approximate real-world rib fracture risk for 30-year-old occupants; the new risk function reduces the overestimation. Moreover, the new function can be used as a direct replacement of the previous one within the 2012 probabilistic framework.

17.
Ann Biomed Eng ; 49(2): 802-811, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32940897

RESUMO

Previous studies indicate that seatbelts may require supplementary restraints to increase their effectiveness in far-side impacts. This study aimed to evaluate the effectiveness of a novel, far-side-specific airbag in restraining and preventing injuries in far-side impacts, and to evaluate the WorldSID's response to the presence of a far-side airbag. A series of tests with three Post-Mortem Human Subjects and the WorldSID was conducted in a vehicle-based sled environment equipped with a far-side airbag. Results of these tests were evaluated and compared to a previous test series conducted without the airbag. All of the PMHS retained the shoulder belt on the shoulder. The airbag significantly reduced PMHS injury severity and maximum lateral head excursion. While the WorldSID exhibited a similar decrease in lateral excursion, it was unable to represent PMHS thoracic deflection or injury probability, and it consistently slipped out of the shoulder belt. This indicates that the WorldSID is limited both in its ability to evaluate the effect of changes in the seatbelt system and in its ability to predict thoracic injury risk and assess airbag-related injury mitigation countermeasures.


Assuntos
Acidentes de Trânsito , Air Bags , Traumatismos da Coluna Vertebral , Traumatismos Torácicos , Aceleração , Idoso , Fenômenos Biomecânicos , Cadáver , Humanos , Pessoa de Meia-Idade , Cintos de Segurança , Ombro/fisiologia , Tórax/fisiologia
18.
Traffic Inj Prev ; 21(sup1): S168-S170, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33179977

RESUMO

OBJECTIVE: This study aims to evaluate the assumption of geometric similitude inherent to equal-stress equal-velocity scaling by determining if scale factors created with different anthropometry metrics result in different scaled injury tolerance predictions. This assumption will be evaluated when equal-stress equal-velocity scaling is employed across dissimilar (e.g., 50th male to small female) and similar (e.g., small female to a reference small female anthropometry) anthropometries. METHODS: Three average male and three small female lower extremity specimens that were tested in ankle inversion/eversion were selected for scaling analysis. Three additional female specimens were selected as a reference dataset, such that the accuracy of the scaled data could be compared to an independent measured dataset. The failure moments, total height and total weight for these donors were determined from literature. Additional anthropometry metrics (leg length, calcaneus height, and bimalleolar width) were taken from each of their respective CT scans. Scale factors were calculated from these previously determined anthropometric metrics for the six donors selected for scaling analysis by targeting the averaged anthropometry metrics of the reference small female dataset. Equal-stress equal-velocity scaling was applied to the failure moments from literature using different scale factors. The mean predicted failure tolerance and standard deviation for scaled data using different scale factors were compared to one another and to the mean failure tolerance from the reference (unscaled) small female dataset. RESULTS: When using average male data to predict ankle failure moment for a small female anthropometry, scaled moments were statistically significantly different from measured small female failure moment. Furthermore, scaled failure moments predicted using scale factors based on different anthropometry metrics were found to be significantly different from one another. Conversely, predicted mean failure moment using scaled female data of a similar size to the reference data was not significantly different from measured female failure moment, and the predicted failure moments were not significantly affected by choice of scale factor. CONCLUSIONS: This study shows that an injury metric predicted with equal-stress equal-velocity scaling is sensitive to choice of scale factor when employing scaling across occupants of dissimilar size and sex. This conclusion suggests error can be introduced into scaled response due to choice of anthropometry metric used to create a scale factor, and therefore, anthropometry metrics used to create scale factors should be justified mechanistically and shown to apply across size and sex before being employed.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Traumatismos do Tornozelo/epidemiologia , Tornozelo/fisiopatologia , Aceleração , Antropometria , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes
19.
Traffic Inj Prev ; 21(sup1): S66-S71, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33206553

RESUMO

OBJECTIVE: Highly automated vehicles may permit alternative seating postures, which could alter occupant kinematics and challenge current restraint designs. One predicted posture is a reclined seated position. While the spine of upright occupants is subjected to flexion during frontal crashes, the orientation of reclined occupants tends to subject the spine to high compressive loads followed by high flexion loads. This study aims to investigate kinematics and mechanisms of loading in the thoracolumbar spine for a reclined seated posture through the use of postmortem human subjects (PMHS). METHODS: Frontal impact sled tests (50 kph delta-v) were conducted on five adult midsize male PMHS seated with the torso reclined to 50 degrees with respect to the vertical. The PMHS were seated on a semi-rigid seat and restrained by a seat-integrated three-point belt with dual lap-belt pretensioners and a shoulder-belt pretensioner with a 3 kN load-limiter. 3-D kinematic trajectories of five chosen vertebrae, and the pelvis were measured relative to the vehicle buck. Intervertebral pressure transducers were installed at three locations in the lumbar column to detect load timing. RESULTS: Three PMHS suffered fractures at L1. Combined compression and flexion of the thoracolumbar spine occurred in all tests, but the magnitude of peak flexion varied across the PMHS. During the PMHS' forward excursion, the pelvis rotated anteriorly in two tests and posteriorly in two tests (lap-belt submarining occurred in one). In one test, the pelvis mount interacted with the seat, but did not affect kinematics. CONCLUSIONS: Anterior rotation of the pelvis caused increased extension of the lumbar spine, which exacerbated lumbar compression in two of the PMHS; the one subject whose pelvis kinematic tracking was lost exhibited similar compression kinematics. Posterior rotation of the pelvis enabled lumbar flexion, which decreased lumbar compression, but lead to lap-belt submarining in one case. Lumbar kinematics for these reclined frontal impacts were sensitive to changes in initial posture of the spine (magnitude of lordosis or kyphosis) and pelvis (pitch angle). To our knowledge, this study is the first to analyze thoracolumbar kinematics and resulting injuries of a reclined seating posture using PMHS.


Assuntos
Acidentes de Trânsito/estatística & dados numéricos , Vértebras Lombares/fisiopatologia , Postura Sentada , Traumatismos da Coluna Vertebral/epidemiologia , Vértebras Torácicas/fisiopatologia , Adulto , Fenômenos Biomecânicos , Cadáver , Humanos , Masculino
20.
J Mech Behav Biomed Mater ; 106: 103742, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250953

RESUMO

To enable analysis of the risk of occupants sustaining rib fractures in a crash, generic finite element models of human ribs, one through twelve, were developed. The generic ribs representing an average sized male, were created based on data from several sources and publications. The generic ribs were validated for stiffness and strain predictions in anterior-posterior bending. Essentially, both predicted rib stiffness and rib strain, measured at six locations, were within one standard deviation of the average result in the physical tests. These generic finite elements ribs are suitable for strain-based rib fracture risk predictions, when loaded in anterior-posterior bending. To ensure that human variability is accounted for in future studies, a rib parametric study was conducted. This study shows that the rib cross-sectional height, i.e., the smallest of the cross-sectional dimensions, accounted for most of the strain variance during anterior-posterior loading of the ribs. Therefore, for future rib fracture risk predictions with morphed models of the human thorax, it is important to accurately address rib cross-sectional height.


Assuntos
Acidentes de Trânsito , Análise de Elementos Finitos , Fraturas das Costelas , Fenômenos Biomecânicos , Estudos Transversais , Humanos , Masculino , Costelas , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...