Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
2.
Glob Chang Biol ; 28(1): 245-266, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34653296

RESUMO

Tree rings provide an invaluable long-term record for understanding how climate and other drivers shape tree growth and forest productivity. However, conventional tree-ring analysis methods were not designed to simultaneously test effects of climate, tree size, and other drivers on individual growth. This has limited the potential to test ecologically relevant hypotheses on tree growth sensitivity to environmental drivers and their interactions with tree size. Here, we develop and apply a new method to simultaneously model nonlinear effects of primary climate drivers, reconstructed tree diameter at breast height (DBH), and calendar year in generalized least squares models that account for the temporal autocorrelation inherent to each individual tree's growth. We analyze data from 3811 trees representing 40 species at 10 globally distributed sites, showing that precipitation, temperature, DBH, and calendar year have additively, and often interactively, influenced annual growth over the past 120 years. Growth responses were predominantly positive to precipitation (usually over ≥3-month seasonal windows) and negative to temperature (usually maximum temperature, over ≤3-month seasonal windows), with concave-down responses in 63% of relationships. Climate sensitivity commonly varied with DBH (45% of cases tested), with larger trees usually more sensitive. Trends in ring width at small DBH were linked to the light environment under which trees established, but basal area or biomass increments consistently reached maxima at intermediate DBH. Accounting for climate and DBH, growth rate declined over time for 92% of species in secondary or disturbed stands, whereas growth trends were mixed in older forests. These trends were largely attributable to stand dynamics as cohorts and stands age, which remain challenging to disentangle from global change drivers. By providing a parsimonious approach for characterizing multiple interacting drivers of tree growth, our method reveals a more complete picture of the factors influencing growth than has previously been possible.


Assuntos
Mudança Climática , Florestas , Biomassa , Clima , Temperatura
3.
Ecol Appl ; 30(1): e02004, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31520573

RESUMO

Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha-1 ·yr-1 ) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.


Assuntos
Carbono/análise , Florestas , Teorema de Bayes , Biomassa , Costa Rica , Guiana Francesa
4.
AoB Plants ; 10(3): ply036, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29991997

RESUMO

Understanding how trees mediate the effects of chronic anthropogenic disturbance is fundamental to developing forest sustainable management strategies. The role that intraspecific functional diversity plays in such process is poorly understood. Several tree species are repeatedly defoliated at large scale by cattle breeders in Africa to feed livestock. In addition, these tree species are also debarked for medicinal purposes. These human-induced disturbances lead to biomass loss and subsequent decline in the tree growth. The main objective of this work is to investigate how functional traits mediate tree response to chronic anthropogenic disturbance. We used a unique data set of functional traits and growth rate of 503 individual tree of Afzelia africana. We collected data on leaf mass per area (LMA), wood density (WD) and growth rate, and recorded history of human disturbances (debarking, pruning) on individual tree from 12 populations of A. africana distributed in two ecological zones in Benin (West Africa). We tested the effect of disturbances on absolute growth rate across ontogenetic stages, assessed the role of intraspecific trait variability on growth and tested the role of tree functional strategy on the tree growth response to debarking and pruning. We found that debarking did not affect stem growth, suggesting a fast compensatory regrowth of bark wounded. Moreover, tree response to debarking was independent of the functional strategy. By contrast, we found that pruning reduced tree absolute growth; however, trees with low WD were more strongly affected by pruning than trees with high WD. Our results emphasize the importance for plant functioning of the interplay between the availability of leaves for resource acquisition and a resilience strategy by mobilizing stored resources in stem wood to be reinvested for growth under severe disturbances.

5.
Elife ; 52016 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-27993185

RESUMO

When 2 Mha of Amazonian forests are disturbed by selective logging each year, more than 90 Tg of carbon (C) is emitted to the atmosphere. Emissions are then counterbalanced by forest regrowth. With an original modelling approach, calibrated on a network of 133 permanent forest plots (175 ha total) across Amazonia, we link regional differences in climate, soil and initial biomass with survivors' and recruits' C fluxes to provide Amazon-wide predictions of post-logging C recovery. We show that net aboveground C recovery over 10 years is higher in the Guiana Shield and in the west (21 ±3 Mg C ha-1) than in the south (12 ±3 Mg C ha-1) where environmental stress is high (low rainfall, high seasonality). We highlight the key role of survivors in the forest regrowth and elaborate a comprehensive map of post-disturbance C recovery potential in Amazonia.


Assuntos
Ciclo do Carbono , Agricultura Florestal/métodos , Florestas , Simulação por Computador , África do Sul
6.
Biol Lett ; 12(11)2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27903780

RESUMO

Dispersal is usually associated with the spread of invasive species, but it also has two opposing effects, one decreasing and the other increasing the probability of establishment. Indeed, dispersal both slows population growth at the site of introduction and increases the likelihood of surrounding habitat being colonized. The connectivity of the introduction site is likely to affect dispersal, and, thus, establishment, according to the dispersal behaviour of individuals. Using individual-based models and microcosm experiments on minute wasps, we demonstrated the existence of a hump-shaped relationship between connectivity and establishment in situations in which individual dispersal resembled a diffusion process. These results suggest that there is an optimal level of connectivity for the establishment of introduced populations locally at the site of introduction, and regionally over the whole landscape.


Assuntos
Vespas/fisiologia , Distribuição Animal , Animais , Ecossistema , Espécies Introduzidas , Modelos Biológicos
7.
Carbon Balance Manag ; 11(1): 15, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27525036

RESUMO

BACKGROUND: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. RESULTS: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. CONCLUSIONS: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...