Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anat ; 239(2): 529-535, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33686663

RESUMO

Alternative roles for sweat production beyond thermoregulation, considered less frequently, include chemical signaling. We identified the presence of a well-established rodent urinary pheromone, major urinary protein (MUP) in sweat ductules of the footpad dermal skin of mice. A hindpaw sweat proteomic analysis in hindpaw sweat samples collected in rats and generated by unmyelinated axon activation, identified seven lipocalin family members including MUP and 19 additional unique proteins. Behavioural responses to sniffing male mouse foot protein lysates suggested avoidance in a subset of male mice, but were not definitive. Rodent hindpaw sweat glands secrete a repertoire of proteins that include MUPs known to have roles in olfactory communication.


Assuntos
Comunicação Animal , Proteínas/metabolismo , Suor/metabolismo , Animais , Membro Posterior , Masculino , Camundongos , Ratos Sprague-Dawley
2.
Biochemistry ; 54(4): 1043-52, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25569225

RESUMO

The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Flavina-Adenina Dinucleotídeo/metabolismo , Succinato Desidrogenase/metabolismo , Proteínas de Escherichia coli/química , Flavina-Adenina Dinucleotídeo/química , Oxirredução , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Especificidade por Substrato/fisiologia , Succinato Desidrogenase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA