Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Psychol Gen ; 153(3): 798-813, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38271013

RESUMO

Shortly after birth, human infants demonstrate behavioral selectivity to social stimuli. However, the neural underpinnings of this selectivity are largely unknown. Here, we examine patterns of functional connectivity to determine how regions of the brain interact while processing social stimuli and how these interactions change during the first 2 years of life. Using functional near-infrared spectroscopy (fNIRS), we measured functional connectivity at 6 (n = 147) and 24 (n = 111) months of age in infants from Bangladesh who were exposed to varying levels of environmental adversity (i.e., low- and middle-income cohorts). We employed a background functional connectivity approach that regresses out the effects of stimulus-specific univariate responses that are believed to affect functional connectivity. At 6 months, the two cohorts had similar fNIRS patterns, with moderate connectivity estimates for regions within and between hemispheres. At 24 months, the patterns diverged for the two cohorts. Global (brain-wide) connectivity estimates increased from 6 to 24 months for the low-income cohort and decreased for the middle-income (MI) cohort. In particular, connectivity estimates among regions of interest within the right hemisphere decreased for the MI cohort, providing evidence of neural specialization by 2 years of age. These findings provide insights into the impact of early environmental influences on functional brain development relevant to the processing of social stimuli. (PsycInfo Database Record (c) 2024 APA, all rights reserved).


Assuntos
Cognição Social , Espectroscopia de Luz Próxima ao Infravermelho , Lactente , Humanos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Encéfalo , Mapeamento Encefálico , Pobreza
2.
Cortex ; 169: 18-34, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37847979

RESUMO

Autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) are highly prevalent neurodevelopmental conditions that often co-occur and present both common and distinct neurodevelopmental profiles. Studying the developmental pathways leading to the emergence of ASD and/or ADHD symptomatology is crucial in understanding neurodiversity and discovering the mechanisms that underpin it. This study used functional near-infrared spectroscopy (fNIRS) to investigate differences in cortical specialization to social stimuli between 4- to 6-month-old infants at typical and elevated likelihood of ASD and/or ADHD. Results showed that infants at both elevated likelihood of ASD and ADHD had reduced selectivity to vocal sounds in left middle and superior temporal gyrus. Furthermore, infants at elevated likelihood of ASD showed attenuated responses to visual social stimuli in several cortical regions compared to infants at typical likelihood. Individual brain responses to visual social stimuli were associated with later autism traits, but not ADHD traits. These outcomes support our previous observations showing atypical social brain responses in infants at elevated likelihood of ASD and align with later atypical brain responses to social stimuli observed in children and adults with ASD. These findings highlight the importance of characterizing antecedent biomarkers of atypicalities in processing socially relevant information that might contribute to both phenotypic overlap and divergence across ASD and ADHD conditions and their association with the later emergence of behavioural symptoms.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Criança , Lactente , Adulto , Humanos , Estudos Prospectivos , Encéfalo , Lobo Temporal
3.
Neurophotonics ; 10(2): 023520, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37077217

RESUMO

Open science practices work to increase methodological rigor, transparency, and replicability of published findings. We aim to reflect on what the functional near-infrared spectroscopy (fNIRS) community has done to promote open science practices in fNIRS research and set goals to accomplish over the next 10 years.

4.
Dev Cogn Neurosci ; 56: 101125, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35763916

RESUMO

Social cognition skills and socioemotional development are compromised in children growing up in low SES contexts, however, the mechanisms underlying this association remain unknown. Exposure to psychosocial risk factors early in life alters the child's social milieu and in turn, could lead to atypical processing of social stimuli. In this study, we used functional Near Infrared Spectroscopy (fNIRS) to measure cortical responses to a social discrimination task in children raised in a low-resource setting at 6, 24, and 36 months. In addition, we assessed the relation between cortical responses to social and non-social information with psychosocial risk factors assessed using the Childhood Psychosocial Adversity Scale (CPAS). In line with previous findings, we observed specialization to social stimuli in cortical regions in all age groups. In addition, we found that risk factors were associated with social discrimination at 24 months (intimate partner violence and verbal abuse and family conflict) and 36 months (verbal abuse and family conflict and maternal depression) but not at 6 months. Overall, the results show that exposure to psychosocial adversity has more impact on social information processing in toddlerhood than earlier in infancy.


Assuntos
Cognição , Criança , Cognição/fisiologia , Humanos , Fatores de Risco
5.
Pediatr Res ; 92(4): 956-965, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35091705

RESUMO

The human brain develops through a complex interplay of genetic and environmental influences. During critical periods of development, experiences shape brain architecture, often with long-lasting effects. If experiences are adverse, the effects may include the risk of mental and physical disease, whereas positive environments may increase the likelihood of healthy outcomes. Understanding how psychosocial stress and adverse experiences are embedded in biological systems and how we can identify markers of risk may lead to discovering new approaches to improve patient care and outcomes. Biomarkers can be used to identify specific intervention targets and at-risk children early when physiological system malleability increases the likelihood of intervention success. However, identifying reliable biomarkers has been challenging, particularly in the perinatal period and the first years of life, including in preterm infants. This review explores the landscape of psychosocial stress and adverse experience biomarkers. We highlight potential benefits and challenges of identifying risk clinically and different sub-signatures of stress, and in their ability to inform targeted interventions. Finally, we propose that the combination of preterm birth and adversity amplifies the risk for abnormal development and calls for a focus on this group of infants within the field of psychosocial stress and adverse experience biomarkers. IMPACT: Reviews the landscape of biomarkers of psychosocial stress and adverse experiences in the perinatal period and early childhood and highlights the potential benefits and challenges of their clinical utility in identifying risk status in children, and in developing targeted interventions. Explores associations between psychosocial stress and adverse experiences in childhood with prematurity and identifies potential areas of assessment and intervention to improve outcomes in this at-risk group.


Assuntos
Recém-Nascido Prematuro , Nascimento Prematuro , Lactente , Criança , Gravidez , Feminino , Humanos , Recém-Nascido , Pré-Escolar , Biomarcadores , Recém-Nascido de Baixo Peso , Estresse Psicológico
6.
Neurobiol Lang (Camb) ; 1(1): 9-32, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32274469

RESUMO

Recent neuroimaging studies suggest that monolingual infants activate a left-lateralized frontotemporal brain network in response to spoken language, which is similar to the network involved in processing spoken and signed language in adulthood. However, it is unclear how brain activation to language is influenced by early experience in infancy. To address this question, we present functional near-infrared spectroscopy (fNIRS) data from 60 hearing infants (4 to 8 months of age): 19 monolingual infants exposed to English, 20 unimodal bilingual infants exposed to two spoken languages, and 21 bimodal bilingual infants exposed to English and British Sign Language (BSL). Across all infants, spoken language elicited activation in a bilateral brain network including the inferior frontal and posterior temporal areas, whereas sign language elicited activation in the right temporoparietal area. A significant difference in brain lateralization was observed between groups. Activation in the posterior temporal region was not lateralized in monolinguals and bimodal bilinguals, but right lateralized in response to both language modalities in unimodal bilinguals. This suggests that the experience of two spoken languages influences brain activation for sign language when experienced for the first time. Multivariate pattern analyses (MVPAs) could classify distributed patterns of activation within the left hemisphere for spoken and signed language in monolinguals (proportion correct = 0.68; p = 0.039) but not in unimodal or bimodal bilinguals. These results suggest that bilingual experience in infancy influences brain activation for language and that unimodal bilingual experience has greater impact on early brain lateralization than bimodal bilingual experience.

7.
Neuroimage ; 200: 511-527, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31247300

RESUMO

Despite motion artifacts are a major source of noise in fNIRS infant data, how to approach motion correction in this population has only recently started to be investigated. Homer2 offers a wide range of motion correction methods and previous work on simulated and adult data suggested the use of Spline interpolation and Wavelet filtering as optimal methods for the recovery of trials affected by motion. However, motion artifacts in infant data differ from those in adults' both in amplitude and frequency of occurrence. Therefore, artifact correction recommendations derived from adult data might not be optimal for infant data. We hypothesized that the combined use of Spline and Wavelet would outperform their individual use on data with complex profiles of motion artifacts. To demonstrate this, we first compared, on infant semi-simulated data, the performance of several motion correction techniques on their own and of the novel combined approach; then, we investigated the performance of Spline and Wavelet alone and in combination on real cognitive data from three datasets collected with infants of different ages (5, 7 and 10 months), with different tasks (auditory, visual and tactile) and with different NIRS systems. To quantitatively estimate and compare the efficacy of these techniques, we adopted four metrics: hemodynamic response recovery error, within-subject standard deviation, between-subjects standard deviation and number of trials that survived each correction method. Our results demonstrated that (i) it is always better correcting for motion artifacts than rejecting the corrupted trials; (ii) Wavelet filtering on its own and in combination with Spline interpolation seems to be the most effective approach in reducing the between- and the within-subject standard deviations. Importantly, the combination of Spline and Wavelet was the approach providing the best performance in semi-simulation both at low and high levels of noise, also recovering most of the trials affected by motion artifacts across all datasets, a crucial result when working with infant data.


Assuntos
Artefatos , Córtex Cerebral/fisiologia , Neuroimagem Funcional/normas , Processamento de Imagem Assistida por Computador/normas , Espectroscopia de Luz Próxima ao Infravermelho/normas , Córtex Cerebral/diagnóstico por imagem , Feminino , Movimentos da Cabeça/fisiologia , Humanos , Lactente , Masculino
8.
Neurophotonics ; 5(1): 011020, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29340284

RESUMO

Despite the importance of our ability to interact and communicate with others, the early development of the social brain network remains poorly understood. We examined brain activity in 12- to 14-month-old infants while they were interacting live with an adult in two different naturalistic social scenarios (i.e., reading a picture book versus singing nursery rhymes with gestures), as compared to baseline (i.e., showing infants a toy without eye contact or speech). We used functional near-infrared spectroscopy (fNIRS) recorded over the right temporal lobe of infants to assess the role of the superior temporal sulcus-temporoparietal junction (STS-TPJ) region during naturalistic social interactions. We observed increased cortical activation in the STS-TPJ region to live social stimuli in both socially engaging conditions compared to baseline during real life interaction, with greater activation evident for the joint attention (reading book) condition relative to the social nursery rhymes. These results supported the view that the STS-TPJ region, engaged in the cortical social brain network, is already specialized in infants for processing social signals and is sensitive to communicative situations. This study also highlighted the potential of fNIRS for studying brain function in infants entering toddlerhood during live social interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...