Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (203)2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38251753

RESUMO

The calyptraeid gastropod mollusk, Crepidula fornicata, has been widely used for studies of larval developmental biology, physiology, and ecology. Brooded veliger larvae of this species were collected by siphoning onto a sieve after natural release by adults, distributed into the culture at a density of 200/L, and fed with Isochrysis galbana (strain T-ISO) at 1 x 105 cells/mL. Shell growth and acquisition of competence for metamorphosis were documented for sibling larvae reared in ventilated 800 mL cultures designed for equilibration to ambient air or to defined atmospheric gas mixtures. Contrasting with these laboratory culture conditions; growth and competence data were also collected for larvae reared in a 15 L flow-through ambient seawater mesocosm located in a field population of reproductive adults. Growth rates and timing of metamorphic competence in the laboratory cultures were similar to those reported in previously published studies. Larvae reared in the field mesocosm grew much faster and metamorphosed sooner than reported for any laboratory studies. Together, these methods are suited for exploring larval development under predetermined controlled conditions in the laboratory as well as under naturally occurring conditions in the field.


Assuntos
Gastrópodes , Animais , Alimentos , Laboratórios , Gases , Larva
2.
J Exp Biol ; 225(3)2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35048972

RESUMO

Swimming organisms may actively adjust their behavior in response to the flow around them. Ocean flows are typically turbulent and are therefore characterized by chaotic velocity fluctuations. While some studies have observed planktonic larvae altering their behavior in response to turbulence, it is not always clear whether a plankter is responding to an individual turbulence fluctuation or to the time-averaged flow. To distinguish between these two paradigms, we conducted laboratory experiments with larvae in turbulence. We observed veliger larvae of the gastropod Crepidula fornicata in a jet-stirred turbulence tank while simultaneously measuring two components of the fluid and larval velocity. Larvae were studied at two different stages of development, early and late, and their behavior was analyzed in response to different characteristics of turbulence: acceleration, dissipation and vorticity. Our analysis considered the effects of both the time-averaged flow and the instantaneous flow, around the larvae. Overall, we found that both stages of larvae increased their upward swimming speeds in response to increasing turbulence. However, we found that the early-stage larvae tended to respond to the time-averaged flow, whereas the late-stage larvae tended to respond to the instantaneous flow around them. These observations indicate that larvae can integrate flow information over time and that their behavioral responses to turbulence can depend on both their present and past flow environments.


Assuntos
Gastrópodes , Plâncton , Animais , Comportamento Animal/fisiologia , Larva/fisiologia , Natação/fisiologia
3.
Front Physiol ; 12: 702864, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512378

RESUMO

Rising atmospheric CO2 reduces seawater pH causing ocean acidification (OA). Understanding how resilient marine organisms respond to OA may help predict how community dynamics will shift as CO2 continues rising. The common slipper shell snail Crepidula fornicata is a marine gastropod native to eastern North America that has been a successful invader along the western European coastline and elsewhere. It has also been previously shown to be resilient to global change stressors. To examine the mechanisms underlying C. fornicata's resilience to OA, we conducted two controlled laboratory experiments. First, we examined several phenotypes and genome-wide gene expression of C. fornicata in response to pH treatments (7.5, 7.6, and 8.0) throughout the larval stage and then tested how conditions experienced as larvae influenced juvenile stages (i.e., carry-over effects). Second, we examined genome-wide gene expression patterns of C. fornicata larvae in response to acute (4, 10, 24, and 48 h) pH treatment (7.5 and 8.0). Both C. fornicata larvae and juveniles exhibited resilience to OA and their gene expression responses highlight the role of transcriptome plasticity in this resilience. Larvae did not exhibit reduced growth under OA until they were at least 8 days old. These phenotypic effects were preceded by broad transcriptomic changes, which likely served as an acclimation mechanism for combating reduced pH conditions frequently experienced in littoral zones. Larvae reared in reduced pH conditions also took longer to become competent to metamorphose. In addition, while juvenile sizes at metamorphosis reflected larval rearing pH conditions, no carry-over effects on juvenile growth rates were observed. Transcriptomic analyses suggest increased metabolism under OA, which may indicate compensation in reduced pH environments. Transcriptomic analyses through time suggest that these energetic burdens experienced under OA eventually dissipate, allowing C. fornicata to reduce metabolic demands and acclimate to reduced pH. Carry-over effects from larval OA conditions were observed in juveniles; however, these effects were larger for more severe OA conditions and larvae reared in those conditions also demonstrated less transcriptome elasticity. This study highlights the importance of assessing the effects of OA across life history stages and demonstrates how transcriptomic plasticity may allow highly resilient organisms, like C. fornicata, to acclimate to reduced pH environments.

4.
Methods Mol Biol ; 1128: 35-44, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567206

RESUMO

The slipper limpet, Crepidula fornicata, is a gastropod mollusc of growing importance as a research model in developmental biology and as an invasive organism. The large (>1 mm) veliger larvae of this species are well suited for neuroethological investigations of settlement and metamorphosis. In this chapter, methods are described for conditioning adult broodstock, growing microalgal food for larvae, and culturing larvae to metamorphic competence in artificial seawater. A protocol is also presented for obtaining electrophysiological recordings of ciliary arrest spikes from intact, behaving larvae, as putative neural correlates of larval settlement.


Assuntos
Gastrópodes/fisiologia , Potenciais de Ação , Animais , Cílios/fisiologia , Meios de Cultura , Técnicas de Cultura , Gastrópodes/citologia , Larva/citologia , Larva/fisiologia , Metamorfose Biológica , Microalgas , Reprodução , Água do Mar
5.
Evol Dev ; 10(3): 288-99, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18460091

RESUMO

The gas nitric oxide (NO), and in some cases its downstream second messenger, cyclic guanosine monophosphate (cGMP) function in different taxa to regulate the timing of life-history transitions. Increased taxonomic sampling is required to foster conclusions about the evolution and function of NO/cGMP signaling during life-history transitions. We report on the function and localization of NO and cGMP signaling during metamorphosis of the nudibranch Phestilla sibogae. Pharmacological manipulation of NO or cGMP production in larvae modulated responses to a natural settlement cue from the coral Porites compressa in a manner that suggest inhibitory function for NO/cGMP signaling. However, these treatments were not sufficient to induce metamorphosis in the absence of cue, a result unique to this animal. We show that induction of metamorphosis in response to the settlement cue is associated with a reduction in NO production. We documented the expression of putative NO synthase (NOS) and the production of cGMP during larval development and observed no larval cells in which NOS and cGMP were both detected. The production of cGMP in a bilaterally symmetrical group of cells fated to occupy the distal tip of rhinophores is correlated with competence to respond to the coral settlement cue. These results suggest that endogenous NO and cGMP are involved in modulating responses of P. sibogae to a natural settlement cue. We discuss these results with respect to habitat selection and larval ecology.


Assuntos
GMP Cíclico/metabolismo , Gastrópodes/metabolismo , Metamorfose Biológica/fisiologia , Óxido Nítrico/metabolismo , Transdução de Sinais/fisiologia , Animais , Antozoários/fisiologia , Ecossistema , Espectroscopia de Ressonância de Spin Eletrônica , Gastrópodes/fisiologia , Imuno-Histoquímica , Óxido Nítrico Sintase/metabolismo
6.
Biol Bull ; 213(2): 160-71, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17928523

RESUMO

This paper concerns the role of nitric oxide (NO) in controlling metamorphosis in the marine gastropod Crepidula fornicata. Metamorphosis was stimulated by the nitric oxide synthase (NOS) inhibitors AGH (aminoguanidine hemisulfate) and SMIS (S-methylisothiourea sulfate) at concentrations of about 100-1000 micromol l(-1) and 50-200 micromol l(-1), respectively. Metamorphosis was not, however, induced by the NOS inhibitor l-NAME (l-N(G)-nitroarginine methyl ester) at even the highest concentration tested, 500 micromol l(-1). Moreover, pre-incubation with l-NAME at 20 and 80 micromol l(-1) did not increase the sensitivity of competent larvae to excess K(+), a potent inducer of metamorphosis in this species; we suggest that either l-NAME is ineffective in suppressing NO production in larvae of C. fornicata, or that it works only on the constitutive isoform of the enzyme. In contrast, metamorphosis was potentiated by the guanylate cyclase inhibitor ODQ (1H-[1,2,4]oxadiazolo[4,3, -a]quinoxalin-1-one) in response to a natural metamorphic inducer derived from conspecific adults. Because NO typically stimulates cGMP production through the activation of soluble guanylate cyclase, this result supports the hypothesis that NO acts as an endogenous inhibitor of metamorphosis in C. fornicata. The expression of NOS, shown by immunohistochemical techniques, was detected in the apical ganglion of young larvae but not in older larvae, further supporting the hypothesis that metamorphosis in C. fornicata is made possible by declines in the endogenous concentration of NO during development.


Assuntos
Metamorfose Biológica/fisiologia , Óxido Nítrico/fisiologia , Caramujos/crescimento & desenvolvimento , Animais , Guanilato Ciclase/antagonistas & inibidores , Imuno-Histoquímica , Larva/crescimento & desenvolvimento , Óxido Nítrico Sintase/antagonistas & inibidores
7.
Cell Tissue Res ; 314(3): 437-48, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14598161

RESUMO

While the central ganglia of gastropod molluscs have been studied extensively, relatively little is known about the organization and functions of the peripheral nervous system in these animals. In the present study, we used immunohistochemical procedures to examine the innervation of the rhinophores, oral tentacles and region around the mouth of the aeolid nudibranch, Phestilla sibogae. Serotonin-like immunoreactivity was found in an extensive network of efferent projections apparently originating from central neurons, but was not detected within any peripheral cell bodies. In contrast, large numbers of peripheral, and presumably sensory, somata exhibited reactivity to an antibody raised against tyrosine hydroxylase (the enzyme catalyzing the initial step in the conversion of tyrosine into the catecholamines). Additional tyrosine hydroxylase-like immunoreactivity was detected in afferent fibers of the peripheral cells and in several cells within the rhinophoral ganglia. The presence of serotonin, dopamine and norepinephrine in the rhinophores, tentacles and central ganglia was confirmed using high-performance liquid chromatography. Finally, FMRFamide-like immunoreactivity was detected in cells and tangles of fibers found within the rhinophore, possibly revealing glomerulus-like structures along olfactory pathways. FMRFamide-like immunoreactivity was also found in somata of the rhinophoral ganglia, in a small number of cells located in the body wall lateral to the tentacles and in what appeared to be varicose terminals of efferent projections to the periphery. Together, these results indicate several new features of the gastropod peripheral nervous system and suggest future experiments that will elucidate the function of the novel cells and innervation patterns described here.


Assuntos
Moluscos/metabolismo , Neurônios Aferentes/metabolismo , Neurotransmissores/metabolismo , Sistema Nervoso Periférico/metabolismo , Terminações Pré-Sinápticas/metabolismo , Células Receptoras Sensoriais/metabolismo , Animais , Dopamina/metabolismo , FMRFamida/metabolismo , Gânglios dos Invertebrados/citologia , Gânglios dos Invertebrados/metabolismo , Imuno-Histoquímica , Moluscos/citologia , Boca/inervação , Boca/fisiologia , Neurônios Aferentes/citologia , Norepinefrina/metabolismo , Condutos Olfatórios/citologia , Condutos Olfatórios/metabolismo , Sistema Nervoso Periférico/citologia , Terminações Pré-Sinápticas/ultraestrutura , Células Receptoras Sensoriais/ultraestrutura , Serotonina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA