Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 56(20): 14562-14573, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36198135

RESUMO

Ultraviolet (UV) absorbents and industrial antioxidants are contaminants of emerging concern (CECs), but little is known about their distribution in Arctic wildlife, as well as how these contaminants vary over time, across regions, and between species. We used archived egg samples to examine the temporal patterns of 26 UV absorbents and industrial antioxidants in three seabird species (black-legged kittiwakes Rissa tridactyla, thick-billed murres Uria lomvia, northern fulmars Fulmarus glacialis) sampled in Arctic Canada between 1975 and 2019. Various synthetic phenolic antioxidants, aromatic secondary amines, benzotriazole UV stabilizers, and organic UV filters were detected in the seabird eggs. Overall, kittiwakes had higher levels of several UV absorbents and industrial antioxidants. Most target contaminants reached their peak concentrations at different points during the 44-year study period or did not vary significantly over time. None of these contaminant concentrations have increased in recent years. The antioxidant 2-6-di-tert-butyl-4-methylphenol (BHT) was the most frequently detected contaminant in seabird eggs, and its level significantly declined over the course of the study period in kittiwake eggs but did not change in the eggs of murres and fulmars. Future research should examine the effects of these CECs on the health of avian species, the sources, and exposure pathways of these contaminants.


Assuntos
Charadriiformes , Poluentes Ambientais , Animais , Aminas/metabolismo , Antioxidantes/metabolismo , Regiões Árticas , Aves , Hidroxitolueno Butilado/análise , Hidroxitolueno Butilado/metabolismo , Canadá , Charadriiformes/metabolismo , Monitoramento Ambiental , Poluentes Ambientais/análise , Estudos Retrospectivos , Ovos
2.
PLoS One ; 16(12): e0260339, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34972114

RESUMO

Many long-distance migratory birds use habitats that are scattered across continents and confront hazards throughout the annual cycle that may be population-limiting. Identifying where and when populations spend their time is fundamental to effective management. We tracked 34 adult whimbrels (Numenius phaeopus) from two breeding populations (Mackenzie Delta and Hudson Bay) with satellite transmitters to document the structure of their annual cycles. The two populations differed in their use of migratory pathways and their seasonal schedules. Mackenzie Delta whimbrels made long (22,800 km) loop migrations with different autumn and spring routes. Hudson Bay whimbrels made shorter (17,500 km) and more direct migrations along the same route during autumn and spring. The two populations overlap on the winter grounds and within one spring staging area. Mackenzie Delta whimbrels left the breeding ground, arrived on winter grounds, left winter grounds and arrived on spring staging areas earlier compared to whimbrels from Hudson Bay. For both populations, migration speed was significantly higher during spring compared to autumn migration. Faster migration was achieved by having fewer and shorter stopovers en route. We identified five migratory staging areas including four that were used during autumn and two that were used during spring. Whimbrels tracked for multiple years had high (98%) fidelity to staging areas. We documented dozens of locations where birds stopped for short periods along nearly all migration routes. The consistent use of very few staging areas suggests that these areas are integral to the annual cycle of both populations and have high conservation value.


Assuntos
Migração Animal/fisiologia , Charadriiformes/fisiologia , Animais , Canadá , Geografia , Comunicações Via Satélite , Estações do Ano , Estados Unidos
3.
Sci Rep ; 11(1): 12919, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-34155292

RESUMO

Each year hundreds of millions of birds cross the Atlantic Ocean during the peak of tropical cyclone activity. The extent and consequences of migrant-storm interactions remain unknown. We tracked whimbrels from two populations (Mackenzie Delta; Hudson Bay) to examine overlap between migration routes and storm activity and both the frequency and consequence of storm encounters. Here we show that Mackenzie Delta and Hudson Bay whimbrels follow different routes across the ocean and experience dramatically different rates of storm encounters. Mackenzie Delta whimbrels departed North America from Atlantic Canada, made long ([Formula: see text] = 5440 ± 120.3 km) nonstop flights far out to sea that took several days ([Formula: see text] = 6.1 ± 0.18) to complete and encountered storms during 3 of 22 crossings. Hudson Bay whimbrels departed North America from the south Atlantic Coast, made shorter ([Formula: see text] = 3643 ± 196.2 km) nonstop flights across the Caribbean Basin that took less time ([Formula: see text] = 4.5 ± 0.29) to complete and encountered storms during 13 of 18 crossings. More than half of Hudson Bay storm encounters resulted in groundings on Caribbean islands. Grounded birds required longer ([Formula: see text] = 30.4 ± 5.32 days) to complete trans-Atlantic crossings and three were lost including 2 to hunters and 1 to a predator. One of the Mackenzie Delta whimbrels was lost at sea while crossing the Intertropical Convergence Zone. Whimbrels use two contrasting strategies to cross the Atlantic including (1) a long nonstop flight around the core of storm activity with a low likelihood of encountering storms but no safety net and (2) a shorter flight through the heart of Hurricane Alley with a high likelihood of encountering storms and a safety network of islands to use in the event of an encounter. Demographic consequences of storm encounters will likely play a role in the ongoing evolution of trans-Atlantic migration pathways as global temperatures continue to rise.

4.
Front Microbiol ; 10: 2258, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31649627

RESUMO

Gut microbiota can have important effects on host health, but explanatory factors and pathways that determine gut microbial composition can differ among host lineages. In mammals, host phylogeny is one of the main drivers of gut microbiota, a result of vertical transfer of microbiota during birth. In birds, it is less clear what the drivers might be, but both phylogeny and environmental factors may play a role. We investigated host and environmental factors that underlie variation in gut microbiota composition in eight species of migratory shorebirds. We characterized bacterial communities from 375 fecal samples collected from adults of eight shorebird species captured at a network of nine breeding sites in the Arctic and sub-Arctic ecoregions of North America, by sequencing the V4 region of the bacterial 16S ribosomal RNA gene. Firmicutes (55.4%), Proteobacteria (13.8%), Fusobacteria (10.2%), and Bacteroidetes (8.1%) dominated the gut microbiota of adult shorebirds. Breeding location was the main driver of variation in gut microbiota of breeding shorebirds (R 2 = 11.6%), followed by shorebird host species (R 2 = 1.8%), and sampling year (R 2 = 0.9%), but most variation remained unexplained. Site variation resulted from differences in the core bacterial taxa, whereas rare, low-abundance bacteria drove host species variation. Our study is the first to highlight a greater importance of local environment than phylogeny as a driver of gut microbiota composition in wild, migratory birds under natural conditions.

5.
Ecol Evol ; 7(9): 3243-3256, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28480022

RESUMO

We compiled a >50-year record of morphometrics for semipalmated sandpipers (Calidris pusilla), a shorebird species with a Nearctic breeding distribution and intercontinental migration to South America. Our data included >57,000 individuals captured 1972-2015 at five breeding locations and three major stopover sites, plus 139 museum specimens collected in earlier decades. Wing length increased by ca. 1.5 mm (>1%) prior to 1980, followed by a decrease of 3.85 mm (nearly 4%) over the subsequent 35 years. This can account for previously reported changes in metrics at a migratory stopover site from 1985 to 2006. Wing length decreased at a rate of 1,098 darwins, or 0.176 haldanes, within the ranges of other field studies of phenotypic change. Bill length, in contrast, showed no consistent change over the full period of our study. Decreased body size as a universal response of animal populations to climate warming, and several other potential mechanisms, are unable to account for the increasing and decreasing wing length pattern observed. We propose that the post-WWII near-extirpation of falcon populations and their post-1973 recovery driven by the widespread use and subsequent limitation on DDT in North America selected initially for greater flight efficiency and latterly for greater agility. This predation danger hypothesis accounts for many features of the morphometric data and deserves further investigation in this and other species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...