Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1831(8): 1335-43, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23680781

RESUMO

Bile acids play multiple roles in the physiology of vertebrates; they facilitate lipid absorption, serve as signaling molecules to control carbohydrate and lipid metabolism, and provide a disposal route for cholesterol. Unexpectedly, the α-methylacyl-CoA racemase (Amacr) deficient mice, which are unable to complete the peroxisomal cleavage of C27-precursors to the mature C24-bile acids, are physiologically asymptomatic when maintained on a standard laboratory diet. The aim of this study was to uncover the underlying adaptive mechanism with special reference to cholesterol and bile acid metabolism that allows these mice to have a normal life span. Intestinal cholesterol absorption in Amacr-/- mice is decreased resulting in a 2-fold increase in daily cholesterol excretion. Also fecal excretion of bile acids (mainly C27-sterols) is enhanced 3-fold. However, the body cholesterol pool remains unchanged, although Amacr-deficiency accelerates hepatic sterol synthesis 5-fold. Changes in lipoprotein profiles are mainly due to decreased phospholipid transfer protein activity. Thus Amacr-deficient mice provide a unique example of metabolic regulation, which allows them to have a normal lifespan in spite of the disruption of a major metabolic pathway. This metabolic adjustment can be mainly explained by setting cholesterol and bile acid metabolism to a new balanced level in the Amacr-deficient mouse.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fígado/metabolismo , Racemases e Epimerases/metabolismo , Animais , Ácidos e Sais Biliares/genética , Colesterol/genética , Longevidade/fisiologia , Camundongos , Camundongos Knockout , Racemases e Epimerases/genética
2.
PLoS One ; 4(4): e5090, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19352492

RESUMO

BACKGROUND: Peroxisomal metabolic machinery requires a continuous flow of organic and inorganic solutes across peroxisomal membrane. Concerning small solutes, the molecular nature of their traffic has remained an enigma. METHODS/PRINCIPAL FINDINGS: In this study, we show that disruption in mice of the Pxmp2 gene encoding Pxmp2, which belongs to a family of integral membrane proteins with unknown function, leads to partial restriction of peroxisomal membrane permeability to solutes in vitro and in vivo. Multiple-channel recording of liver peroxisomal preparations reveals that the channel-forming components with a conductance of 1.3 nS in 1.0 M KCl were lost in Pxmp2(-/-) mice. The channel-forming properties of Pxmp2 were confirmed with recombinant protein expressed in insect cells and with native Pxmp2 purified from mouse liver. The Pxmp2 channel, with an estimated diameter of 1.4 nm, shows weak cation selectivity and no voltage dependence. The long-lasting open states of the channel indicate its functional role as a protein forming a general diffusion pore in the membrane. CONCLUSIONS/SIGNIFICANCE: Pxmp2 is the first peroxisomal channel identified, and its existence leads to prediction that the mammalian peroxisomal membrane is permeable to small solutes while transfer of "bulky" metabolites, e.g., cofactors (NAD/H, NADP/H, and CoA) and ATP, requires specific transporters.


Assuntos
Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana/fisiologia , Peroxissomos/metabolismo , Animais , Sequência de Bases , Permeabilidade da Membrana Celular , Primers do DNA , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Biochemistry ; 46(14): 4305-21, 2007 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-17371050

RESUMO

Thiolases are CoA-dependent enzymes which catalyze the formation of a carbon-carbon bond in a Claisen condensation step and its reverse reaction via a thiolytic degradation mechanism. Mitochondrial acetoacetyl-coenzyme A (CoA) thiolase (T2) is important in the pathways for the synthesis and degradation of ketone bodies as well as for the degradation of 2-methylacetoacetyl-CoA. Human T2 deficiency has been identified in more than 60 patients. A unique property of T2 is its activation by potassium ions. High-resolution human T2 crystal structures are reported for the apo form and the CoA complex, with and without a bound potassium ion. The potassium ion is bound near the CoA binding site and the catalytic site. Binding of the potassium ion at this low-affinity binding site causes the rigidification of a CoA binding loop and an active site loop. Unexpectedly, a high-affinity binding site for a chloride ion has also been identified. The chloride ion is copurified, and its binding site is at the dimer interface, near two catalytic loops. A unique property of T2 is its ability to use 2-methyl-branched acetoacetyl-CoA as a substrate, whereas the other structurally characterized thiolases cannot utilize the 2-methylated compounds. The kinetic measurements show that T2 can degrade acetoacetyl-CoA and 2-methylacetoacetyl-CoA with similar catalytic efficiencies. For both substrates, the turnover numbers increase approximately 3-fold when the potassium ion concentration is increased from 0 to 40 mM KCl. The structural analysis of the active site of T2 indicates that the Phe325-Pro326 dipeptide near the catalytic cavity is responsible for the exclusive 2-methyl-branched substrate specificity.


Assuntos
Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Cloretos/metabolismo , Mitocôndrias/enzimologia , Potássio/metabolismo , Acetil-CoA C-Acetiltransferase/genética , Acetil-CoA C-Acetiltransferase/isolamento & purificação , Acil Coenzima A/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Sítios de Ligação , Catálise , Cloretos/química , Sequência Conservada , Cristalografia por Raios X , Dimerização , Dipeptídeos/química , Escherichia coli/genética , Humanos , Ligação de Hidrogênio , Íons , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Fenilalanina/química , Potássio/química , Prolina/química , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
4.
J Biol Chem ; 278(22): 20154-61, 2003 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-12654921

RESUMO

A data base search with YBR026c/MRF1', which encodes trans-2-enoyl thioester reductase of the intramitochondrial fatty acid synthesis (FAS) type II in yeast (Torkko, J. M., Koivuranta, K. T., Miinalainen, I. J., Yagi, A. I., Schmitz, W., Kastaniotis, A. J., Airenne, T. T., Gurvitz, A., and Hiltunen, K. J. (2001) Mol. Cell. Biol. 21, 6243-6253), revealed the clone AA393871 (HsNrbf-1, nuclear receptor binding factor 1) in human EST data bank. Expression of HsNrbf-1, tagged C-terminally with green fluorescent protein, in HeLa cells, resulted in a punctated fluorescence signal, superimposable with the MitoTracker Red dye. Wild-type polypeptide was immunoisolated from the extract of bovine heart mitochondria. Recombinant HsNrbf-1p reduces trans-2-enoyl-CoA to acyl-CoA with chain length from C6 to C16 in an NADPH-dependent manner with preference to medium chain length substrate. Furthermore, expression of HsNRBF-1 in the ybr026cDelta yeast strain restored mitochondrial respiratory function allowing growth on glycerol. These findings provide evidence that Nrbf-1ps act as a mitochondrial 2-enoyl thioester reductase, and mammalian cells may possess bacterial type fatty acid synthetase (FAS type II) in mitochondria, in addition to FAS type I in the cytoplasm.


Assuntos
Ácidos Graxos Dessaturases/química , NADH NADPH Oxirredutases , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Bovinos , Primers do DNA , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/isolamento & purificação , Ácidos Graxos Dessaturases/metabolismo , Células HeLa , Humanos , Microscopia de Fluorescência , Mitocôndrias Cardíacas/enzimologia , Dados de Sequência Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH , Homologia de Sequência de Aminoácidos
5.
Biochem J ; 367(Pt 2): 433-41, 2002 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-12106015

RESUMO

Rat peroxisomal multifunctional enzyme type 1 (perMFE-1) is a monomeric protein of beta-oxidation. We have defined five functional domains (A, B, C, D and E) in the perMFE-1 based on comparison of the amino acid sequence with homologous proteins from databases and structural data of the hydratase-1/isomerases (H1/I) and (3 S )-hydroxyacyl-CoA dehydrogenases (HAD). Domain A (residues 1-190) comprises the H1/I fold and catalyses both 2-enoyl-CoA hydratase-1 and Delta(3)-Delta(2)-enoyl-CoA isomerase reactions. Domain B (residues 191-280) links domain A to the (3 S )-dehydrogenase region, which includes both domain C (residues 281-474) and domain D (residues 480-583). Domains C and D carry features of the dinucleotide-binding and the dimerization domains of monofunctional HADs respectively. Domain E (residues 584-722) has sequence similarity to domain D of the perMFE-1, which suggests that it has evolved via partial gene duplication. Experiments with engineered perMFE-1 variants demonstrate that the H1/I competence of domain A requires stabilizing interactions with domains D and E. The variant His-perMFE (residues 288-479)Delta, in which the domain C is deleted, is stable and has hydratase-1 activity. It is proposed that the extreme C-terminal domain E in perMFE-1 serves the following three functions: (i) participation in the folding of the N-terminus into a functionally competent H1/I fold, (ii) stabilization of the dehydrogenation domains by interaction with the domain D and (iii) the targeting of the perMFE-1 to peroxisomes via its C-terminal tripeptide.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/química , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Enoil-CoA Hidratase/química , Enoil-CoA Hidratase/metabolismo , Isomerases/química , Isomerases/metabolismo , Complexos Multienzimáticos/química , Complexos Multienzimáticos/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/genética , Sequência de Aminoácidos , Animais , Enoil-CoA Hidratase/genética , Escherichia coli/genética , Isomerases/genética , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multienzimáticos/genética , Enzima Bifuncional do Peroxissomo , Dobramento de Proteína , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA