Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Tissue Eng Part A ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38517083

RESUMO

In the realm of in situ cartilage engineering, the targeted delivery of both cells and hydrogel materials to the site of a defect serves to directly stimulate chondral repair. Although the in situ application of stem cell-laden soft hydrogels to tissue defects holds great promise for cartilage regeneration, a significant challenge lies in overcoming the inherent limitation of these soft hydrogels, which must attain mechanical properties akin to the native tissue to withstand physiological loading. We therefore developed a system where a gelatin methacryloyl hydrogel laden with human adipose-derived mesenchymal stem cells is combined with a secondary structure to provide bulk mechanical reinforcement. In this study, we used the negative embodied sacrificial template 3D printing technique to generate eight different lattice-based reinforcement structures made of polycaprolactone, which ranged in porosity from 80% to 90% with stiffnesses from 28 ± 5 kPa to 2853 ± 236 kPa. The most promising of these designs, the hex prism edge, was combined with the cellular hydrogel and retained a stable stiffness over 41 days of chondrogenic differentiation. There was no significant difference between the hydrogel-only and hydrogel scaffold group in the sulfated glycosaminoglycan production (340.46 ± 13.32 µg and 338.92 ± 47.33 µg, respectively) or Type II Collagen gene expression. As such, the use of negative printing represents a promising solution for the integration of bulk reinforcement without losing the ability to produce new chondrogenic matrix.

2.
Front Cell Dev Biol ; 12: 1353154, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38516128

RESUMO

Tissue-engineered implants for bone regeneration require consideration regarding their mineralization and vascularization capacity. Different geometries, such as biomimetic designs and lattices, can influence the mechanical properties and the vascularization capacity of bone-mimicking implants. Negative Embodied Sacrificial Template 3D (NEST3D) printing is a versatile technique across a wide range of materials that enables the production of bone-mimicking scaffolds. In this study, different scaffold motifs (logpile, Voronoi, and trabecular bone) were fabricated via NEST3D printing in polycaprolactone to determine the effect of geometrical design on stiffness (10.44 ± 6.71, 12.61 ± 5.71, and 25.93 ± 4.16 MPa, respectively) and vascularization. The same designs, in a polycaprolactone scaffold only, or when combined with gelatin methacryloyl, were then assessed for their ability to allow the infiltration of blood vessels in a chick chorioallantoic membrane (CAM) assay, a cost-effective and time-efficient in ovo assay to assess vascularization. Our findings showed that gelatin methacrylolyl alone did not allow new chorioallantoic membrane tissue or blood vessels to infiltrate within its structure. However, polycaprolactone on its own or when combined with gelatin methacrylolyl allowed tissue and vessel infiltration in all scaffold designs. The trabecular bone design showed the greatest mineralized matrix production over the three designs tested. This reinforces our hypothesis that both biomaterial choice and scaffold motifs are crucial components for a bone-mimicking scaffold.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38083162

RESUMO

Pelvic floor disorders, including pelvic organ prolapse (POP) and stress urinary incontinence (SUI), are serious and very common. Surgery is commonly undertaken to restore the strength of the vaginal wall using transvaginal surgical mesh (TVM). However, up to 15% of TVM implants result in long-term complications, including pain, recurrent symptoms, and infection.Clinical Relevance- In this study, a new bioengineered TVM has been developed to address these issues. The TVM is visible using noninvasive imaging techniques such as computed tomography (CT); it has a highly similar structural profile to human tissue and potential to reduce pain and inflammation. These combined technological advances have the potential to revolutionize women's health.


Assuntos
Prolapso de Órgão Pélvico , Incontinência Urinária por Estresse , Feminino , Humanos , Prolapso de Órgão Pélvico/diagnóstico por imagem , Prolapso de Órgão Pélvico/cirurgia , Prolapso de Órgão Pélvico/complicações , Incontinência Urinária por Estresse/diagnóstico por imagem , Incontinência Urinária por Estresse/cirurgia , Incontinência Urinária por Estresse/complicações , Vagina/diagnóstico por imagem , Telas Cirúrgicas/efeitos adversos , Tomografia/efeitos adversos
4.
ACS Biomater Sci Eng ; 9(11): 5933-5952, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37791888

RESUMO

In vitro human skin models are evolving into versatile platforms for the study of skin biology and disorders. These models have many potential applications in the fields of drug testing and safety assessment, as well as cosmetic and new treatment development. The development of in vitro skin models that accurately mimic native human skin can reduce reliance on animal models and also allow for more precise, clinically relevant testing. Recent advances in biofabrication techniques and biomaterials have led to the creation of increasingly complex, multilayered skin models that incorporate important functional components of skin, such as the skin barrier, mechanical properties, pigmentation, vasculature, hair follicles, glands, and subcutaneous layer. This improved ability to recapitulate the functional aspects of native skin enhances the ability to model the behavior and response of native human skin, as the complex interplay of cell-to-cell and cell-to-material interactions are incorporated. In this review, we summarize the recent developments in in vitro skin models, with a focus on their applications, limitations, and future directions.


Assuntos
Materiais Biocompatíveis , Pele , Animais , Humanos
5.
Sensors (Basel) ; 23(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37050496

RESUMO

Articulatory synthesis is one of the approaches used for modeling human speech production. In this study, we propose a model-based algorithm for learning the policy to control the vocal tract of the articulatory synthesizer in a vowel-to-vowel imitation task. Our method does not require external training data, since the policy is learned through interactions with the vocal tract model. To improve the sample efficiency of the learning, we trained the model of speech production dynamics simultaneously with the policy. The policy was trained in a supervised way using predictions of the model of speech production dynamics. To stabilize the training, early stopping was incorporated into the algorithm. Additionally, we extracted acoustic features using an acoustic word embedding (AWE) model. This model was trained to discriminate between different words and to enable compact encoding of acoustics while preserving contextual information of the input. Our preliminary experiments showed that introducing this AWE model was crucial to guide the policy toward a near-optimal solution. The acoustic embeddings, obtained using the proposed approach, were revealed to be useful when applied as inputs to the policy and the model of speech production dynamics.


Assuntos
Fonética , Acústica da Fala , Humanos , Comportamento Imitativo , Fala , Aprendizagem , Medida da Produção da Fala
6.
ACS Appl Mater Interfaces ; 15(4): 4863-4872, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36652631

RESUMO

Endothelial cells lining blood vessels are continuously exposed to biophysical cues that regulate their function in health and disease. As we age, blood vessels lose their elasticity and become stiffer. Vessel stiffness alters the mechanical forces that endothelial cells experience. Despite ample evidence on the contribution of endothelial cells to vessel stiffness, less is known about how vessel stiffness affects endothelial cells. In this study, we developed a versatile model to study the cooperative effect of substrate stiffness and cyclic stretch on human aortic endothelial cells. We cultured endothelial cells on elastomeric wells covered with fibronectin-coated polyacrylamide gel. Varying the concentrations of acrylamide and bis-acrylamide enabled us to produce soft and stiff substrates with elastic modules of 40 and 200 kPa, respectively. Using a customized three-dimensional (3D) printed cam-driven system, the cells were exposed to 5 and 10% cyclic stretch levels. This enabled us to mimic the stiffness and stretch levels that endothelial cells experience in young and aged arteries. Using this model, we found that endothelial cells cultured on a soft substrate had minimal cytoskeletal alignment to the direction of the stretch compared to the ones cultured on the stiff substrate. We also observed an increase in the cellular area and aspect ratio in cells cultured on the stiff substrate, both of which are positively regulated by cyclic stretch. However, neither cyclic stretch nor substrate stiffness significantly affected the nuclear circularity. Additionally, we found that the accumulation of NF-κB in the nucleus, endothelial proliferation, tube formation, and expression of IL1ß depends on the stretch level and substrate stiffness. Our model can be further used to investigate the complex signaling pathways associated with vessel stiffening that govern the endothelial responses to mechanical forces.


Assuntos
Técnicas de Cultura de Células , Células Endoteliais , Humanos , Idoso , Células Endoteliais/metabolismo , Elasticidade , Fenômenos Mecânicos , Células Cultivadas , Acrilamidas/metabolismo
7.
Anal Chem ; 95(5): 3089-3097, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36692453

RESUMO

Here, we describe the generation of dynamic vortices in micro-scale cavities at low flow rates. The system utilizes a computer-controlled audio speaker to axially oscillate the inlet tube of the microfluidic system at desired frequencies and amplitudes. The oscillation of the tube induces transiently high flow rates in the system, which facilitates the generation of dynamic vortices inside the cavity. The size of the vortices can be modulated by varying the tube oscillation frequency or amplitude. The vortices can be generated in single or serial cavities and in a wide range of cavity sizes. We demonstrate the suitability of the tube oscillation mechanism for the pulsed injection of water-based solutions or whole blood into the cavity. The injection rate can be controlled by the oscillation characteristics of the tube, enabling the injection of liquids at ultralow flow rates. The dynamic vortices facilitate the rapid mixing of the injected liquid with the main flow. The controllability and versatility of this technology allow for the development of programmable inertial microfluidic systems for performing multistep biological assays.


Assuntos
Análise Química do Sangue , Microfluídica , Microfluídica/métodos , Análise Química do Sangue/métodos
8.
IEEE Rev Biomed Eng ; 16: 487-498, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35380970

RESUMO

Stroke is a serious neurological disease that may lead to long-term disabilities and even death for stroke patients worldwide. The acute period, ( ≤ 1 mo post-stroke), is crucial for rehabilitation but the current standard clinical practice may be ineffective for patients with severe motor impairment, since most rehabilitation programs involve physical movement. Imagined movement - the so-called motor imagery (MI) - has been shown to activate motor areas of the brain without physical movement. MI therefore offers an opportunity for early rehabilitation of stroke patients. MI, however, is not widely employed in clinical practice due to a lack of evidence-based research. Here, we review MI-based approaches to rehabilitation of stroke patients and immersive virtual reality (VR) technologies to potentially assist MI and thus, promote recovery of motor function.


Assuntos
Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Realidade Virtual , Humanos , Recuperação de Função Fisiológica , Encéfalo
9.
Adv Healthc Mater ; 11(24): e2201305, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36541723

RESUMO

Human articular cartilage has a poor ability to self-repair, meaning small injuries often lead to osteoarthritis, a painful and debilitating condition which is a major contributor to the global burden of disease. Existing clinical strategies generally do not regenerate hyaline type cartilage, motivating research toward tissue engineering solutions. Prospective cartilage tissue engineering therapies can be placed into two broad categories: i) Ex situ strategies, where cartilage tissue constructs are engineered in the lab prior to implantation and ii) in situ strategies, where cells and/or a bioscaffold are delivered to the defect site to stimulate chondral repair directly. While commonalities exist between these two approaches, the core point of distinction-whether chondrogenesis primarily occurs "within" or "without" (outside) the body-can dictate many aspects of the treatment. This difference influences decisions around cell selection, the biomaterials formulation and the surgical implantation procedure, the processes of tissue integration and maturation, as well as, the prospects for regulatory clearance and clinical translation. Here, ex situ and in situ cartilage engineering strategies are compared: Highlighting their respective challenges, opportunities, and prospects on their translational pathways toward long term human cartilage repair.


Assuntos
Cartilagem Articular , Humanos , Cartilagem Articular/metabolismo , Engenharia Tecidual/métodos , Estudos Prospectivos , Materiais Biocompatíveis/metabolismo , Regeneração , Condrogênese , Alicerces Teciduais
10.
Sci Rep ; 12(1): 18907, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36344673

RESUMO

Photobiomodulation (PBM) refers to the use of light to modulate cellular processes, and has demonstrated utility in improving wound healing outcomes, and reducing pain and inflammation. Despite the potential benefits of PBM, the precise molecular mechanisms through which it influences cell behavior are not yet well understood. Inconsistent reporting of key light parameters has created uncertainty around optimal exposure profiles. In addition, very low intensities of light, < 0.1 J/cm2, have not been thoroughly examined for their use in PBM. Here, we present a custom-made compact, and modular LED-based exposure system for studying the effects of very low-intensity visible light (cell proliferation, migration, ROS production, and mitochondrial membrane potential) of three different wavelengths in a parallel manner. The device allows for six repeats of three different exposure conditions plus a non-irradiated control on a single 24-well plate. The immortalised human keratinocyte cell line, HaCaT, was selected as a major cellular component of the skin epidermal barrier. Furthermore, an in vitro wound model was developed by allowing the HaCaT to form a confluent monolayer, then scratching the cells with a pipette tip to form a wound. Cells were exposed to yellow (585 nm, 0.09 mW, ~ 3.7 mJ/cm2), orange (610 nm, 0.8 mW, ~ 31 mJ/cm2), and red (660 nm, 0.8 mW, ~ 31 mJ/cm2) light for 10 min. 48 h post-irradiation, immunohistochemistry was performed to evaluate cell viability, proliferation, ROS production, and mitochondrial membrane potential. The results demonstrate increased proliferation and decreased scratch area for all exposure conditions, however only red light increased the mitochondrial activity. Oxidative stress levels did not increase for any of the exposures. The present exposure system provides opportunities to better understand the complex cellular mechanisms driven by the irradiation of skin cells with visible light.


Assuntos
Terapia com Luz de Baixa Intensidade , Humanos , Terapia com Luz de Baixa Intensidade/métodos , Espécies Reativas de Oxigênio/metabolismo , Queratinócitos/metabolismo , Cicatrização/efeitos da radiação , Proliferação de Células/efeitos da radiação , Luz
11.
Lab Chip ; 22(10): 1917-1928, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35420623

RESUMO

Microfluidic systems incorporating sudden expansions are widely used for generation of vortex flow patterns. However, the formation of vortices requires high flow rates to induce inertial effects. Here, we introduce a new method for generating dynamic vortices in microfluidics at low static flow rates. Human blood is driven through a microfluidic channel incorporating a semi-circular stenosis barrier. The inlet tube of the channel is axially oscillated using a computer-controlled audio-speaker. The tube oscillation induces high transient flow rates in the channel, which generates dynamic vortices across the stenosis barrier. The size of the vortices can be modulated by varying the frequency and amplitude of tube oscillation. Various vortex flow patterns can be generated by varying the flow rate. The formation and size of the vortices can be predicted using the Reynolds number of the oscillating tube. We demonstrate the potential application of the system for investigating the adhesion and phagocytosis of circulating immune cells under pathologically high shear rates induced at the stenosis. This approach facilitates the development of versatile and controllable inertial microfluidic systems for performing various cellular assays while operating at low static flow rates and low sample volumes.


Assuntos
Microfluídica , Constrição Patológica , Humanos , Microfluídica/métodos
12.
Lab Chip ; 22(2): 262-271, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34931212

RESUMO

Microfluidic systems are widely used for studying the mechanotransduction of flow-induced shear stress in mechanosensitive cells. However, these studies are generally performed under constant flow rates, mainly, due to the deficiency of existing pumps for generating transient flows. To address this limitation, we have developed a unique dynamic gravity pump to generate transient flows in microfluidics. The pump utilises a motorised 3D-printed cam-lever mechanism to change the inlet pressure of the system in repeated cycles. 3D printing technology facilitates the rapid and low-cost prototyping of the pump. Customised transient flow patterns can be generated by modulating the profile, size, and rotational speed of the cam, location of the hinge along the lever, and the height of the syringe. Using this unique dynamic gravity pump, we investigated the mechanotransduction of shear stress in HEK293 cells stably expressing Piezo1 mechanosensitive ion channel under transient flows. The controllable, simple, low-cost, compact, and modular design of the pump makes it suitable for studying the mechanobiology of shear sensitive cells under transient flows.


Assuntos
Canais Iônicos , Mecanotransdução Celular , Células HEK293 , Humanos , Mecanotransdução Celular/fisiologia , Impressão Tridimensional , Estresse Mecânico
13.
Front Bioeng Biotechnol ; 9: 791116, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34957080

RESUMO

Here, we describe a motorized cam-driven system for the cyclic stretch of aortic endothelial cells. Our modular design allows for generating customized spatiotemporal stretch profiles by varying the profile and size of 3D printed cam and follower elements. The system is controllable, compact, inexpensive, and amenable for parallelization and long-term experiments. Experiments using human aortic endothelial cells show significant changes in the cytoskeletal structure and morphology of cells following exposure to 5 and 10% cyclic stretch over 9 and 16 h. The system provides upportunities for exploring the complex molecular and cellular processes governing the response of mechanosensitive cells under cyclic stretch.

14.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34830302

RESUMO

Osteochondral (OC) defects are debilitating joint injuries characterized by the loss of full thickness articular cartilage along with the underlying calcified cartilage through to the subchondral bone. While current surgical treatments can provide some relief from pain, none can fully repair all the components of the OC unit and restore its native function. Engineering OC tissue is challenging due to the presence of the three distinct tissue regions. Recent advances in additive manufacturing provide unprecedented control over the internal microstructure of bioscaffolds, the patterning of growth factors and the encapsulation of potentially regenerative cells. These developments are ushering in a new paradigm of 'multiphasic' scaffold designs in which the optimal micro-environment for each tissue region is individually crafted. Although the adoption of these techniques provides new opportunities in OC research, it also introduces challenges, such as creating tissue interfaces, integrating multiple fabrication techniques and co-culturing different cells within the same construct. This review captures the considerations and capabilities in developing 3D printed OC scaffolds, including materials, fabrication techniques, mechanical function, biological components and design.


Assuntos
Doenças das Cartilagens/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Impressão Tridimensional , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Implantes Absorvíveis , Animais , Materiais Biocompatíveis , Osso e Ossos , Cartilagem Articular , Humanos , Transplante de Tecidos/métodos
15.
Biophys Rev ; 13(5): 769-786, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34777617

RESUMO

The human circulatory system is a marvelous fluidic system, which is very sensitive to biophysical and biochemical cues. The current animal and cell culture models do not recapitulate the functional properties of the human circulatory system, limiting our ability to fully understand the complex biological processes underlying the dysfunction of this multifaceted system. In this review, we discuss the unique ability of microfluidic systems to recapitulate the biophysical, biochemical, and functional properties of the human circulatory system. We also describe the remarkable capacity of microfluidic technologies for exploring the complex mechanobiology of the cardiovascular system, mechanistic studying of cardiovascular diseases, and screening cardiovascular drugs with the additional benefit of reducing the need for animal models. We also discuss opportunities for further advancement in this exciting field.

16.
Lab Chip ; 21(23): 4672-4684, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34739024

RESUMO

Customised audio signals, such as musical notes, can be readily generated by audio software on smartphones and played over audio speakers. Audio speakers translate electrical signals into the mechanical motion of the speaker cone. Coupling the inlet tube to the speaker cone causes the harmonic oscillation of the tube, which in turn changes the velocity profile and flow rate. We employ this strategy for generating programmable dynamic flow patterns in microfluidics. We show the generation of customised rib and vortex patterns through the application of multi-tone audio signals in water-based and whole blood samples. We demonstrate the precise capability to control the number and extent of the ribs and vortices by simply setting the frequency ratio of two- and three-tone audio signals. We exemplify potential applications of tube oscillation for studying the functional responses of circulating immune cells under pathophysiological shear rates. The system is programmable, compact, low-cost, biocompatible, and durable. These features make it suitable for a variety of applications across chemistry, biology, and physics.


Assuntos
Microfluídica , Software
17.
Essays Biochem ; 65(3): 555-567, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34342361

RESUMO

Skeletal muscle is a functional tissue that accounts for approximately 40% of the human body mass. It has remarkable regenerative potential, however, trauma and volumetric muscle loss, progressive disease and aging can lead to significant muscle loss that the body cannot recover from. Clinical approaches to address this range from free-flap transfer for traumatic events involving volumetric muscle loss, to myoblast transplantation and gene therapy to replace muscle loss due to sarcopenia and hereditary neuromuscular disorders, however, these interventions are often inadequate. The adoption of engineering paradigms, in particular materials engineering and materials/tissue interfacing in biology and medicine, has given rise to the rapidly growing, multidisciplinary field of bioengineering. These methods have facilitated the development of new biomaterials that sustain cell growth and differentiation based on bionic biomimicry in naturally occurring and synthetic hydrogels and polymers, as well as additive fabrication methods to generate scaffolds that go some way to replicate the structural features of skeletal muscle. Recent advances in biofabrication techniques have resulted in significant improvements to some of these techniques and have also offered promising alternatives for the engineering of living muscle constructs ex vivo to address the loss of significant areas of muscle. This review highlights current research in this area and discusses the next steps required towards making muscle biofabrication a clinical reality.


Assuntos
Materiais Biocompatíveis , Engenharia Tecidual , Materiais Biocompatíveis/química , Diferenciação Celular , Humanos , Hidrogéis/química , Músculo Esquelético , Engenharia Tecidual/métodos
18.
J Neural Eng ; 18(5)2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34384052

RESUMO

Objective.Error-related potentials (ErrPs) are elicited in the human brain following an error's perception. Recently, ErrPs have been observed in a novel task situation, i.e. when stroke patients perform upper-limb rehabilitation exercises. These ErrPs can be used to developassist-as-needed(AAN) robotic stroke rehabilitation systems. However, to date, there is no reported research on assessing the feasibility of using the ErrPs to implement the AAN approach. Hence, in this study, we evaluated and compared the single-trial classification of novel ErrPs using various classical machine learning and deep learning approaches.Approach.Electroencephalogram data of 13 stroke patients recorded while performing an upper-limb physical rehabilitation exercise were used. Two classification approaches, one combining the xDAWN spatial filtering and support vector machines, and the other using a convolutional neural network-based double transfer learning, were utilized.Main results.Results showed that the ErrPs could be detected with a mean area under the receiver operating characteristics curve of 0.838, and a mean accuracy of 0.842, 0.257 above the chance level (p< 0.05), for a within-subject classification. The results indicated the feasibility of using ErrP signals in real-time AAN robot therapy with evidence from the conducted latency analysis, cross-subject classification, and three-class asynchronous classification.Significance.The findings presented support our proposed approach of using ErrPs as a measure to trigger and/or modulate as required the robotic assistance in a real-timehuman-in-the-looprobotic stroke rehabilitation system.


Assuntos
Interfaces Cérebro-Computador , Reabilitação do Acidente Vascular Cerebral , Acidente Vascular Cerebral , Encéfalo , Eletroencefalografia , Humanos , Acidente Vascular Cerebral/diagnóstico , Máquina de Vetores de Suporte
19.
Polymers (Basel) ; 13(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34451130

RESUMO

Biofabrication using well-matched cell/materials systems provides unprecedented opportunities for dealing with human health issues where disease or injury overtake the body's native regenerative abilities. Such opportunities can be enhanced through the development of biomaterials with cues that appropriately influence embedded cells into forming functional tissues and organs. In this context, biomaterials' reliance on rigid biofabrication techniques needs to support the incorporation of a hierarchical mimicry of local and bulk biological cues that mimic the key functional components of native extracellular matrix. Advances in synthetic self-assembling peptide biomaterials promise to produce reproducible mimics of tissue-specific structures and may go some way in overcoming batch inconsistency issues of naturally sourced materials. Recent work in this area has demonstrated biofabrication with self-assembling peptide biomaterials with unique biofabrication technologies to support structural fidelity upon 3D patterning. The use of synthetic self-assembling peptide biomaterials is a growing field that has demonstrated applicability in dermal, intestinal, muscle, cancer and stem cell tissue engineering.

20.
ACS Biomater Sci Eng ; 7(7): 3340-3350, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34125518

RESUMO

Synthetic materials designed for improved biomimicry of the extracellular matrix must contain fibrous, bioactive, and mechanical cues. Self-assembly of low molecular weight gelator (LMWG) peptides Fmoc-DIKVAV (Fmoc-aspartic acid-isoleucine-lysine-valine-alanine-valine) and Fmoc-FRGDF (Fmoc-phenylalanine-arginine-glycine-aspartic acid-phenylalanine) creates fibrous and bioactive hydrogels. Polysaccharides such as agarose are biocompatible, degradable, and non-toxic. Agarose and these Fmoc-peptides have both demonstrated efficacy in vitro and in vivo. These materials have complementary properties; agarose has known mechanics in the physiological range but is inert and would benefit from bioactive and topographical cues found in the fibrous, protein-rich extracellular matrix. Fmoc-DIKVAV and Fmoc-FRGDF are synthetic self-assembling peptides that present bioactive cues "IKVAV" and "RGD" designed from the ECM proteins laminin and fibronectin. The work presented here demonstrates that the addition of agarose to Fmoc-DIKVAV and Fmoc-FRGDF results in physical characteristics that are dependent on agarose concentration. The networks are peptide-dominated at low agarose concentrations, and agarose-dominated at high agarose concentrations, resulting in distinct changes in structural morphology. Interestingly, at mid-range agarose concentration, a hybrid network is formed with structural similarities to both peptide and agarose systems, demonstrating reinforced mechanical properties. Bioactive-LMWG polysaccharide hydrogels demonstrate controllable microenvironmental properties, providing the ability for tissue-specific biomaterial design for tissue engineering and 3D cell culture.


Assuntos
Hidrogéis , Peptídeos , Materiais Biocompatíveis , Fenilalanina , Polissacarídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...