Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Neuroimage Clin ; 36: 103150, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35988341

RESUMO

BACKGROUND: Delayed therapy escape after thalamic deep brain stimulation (DBS) for essential tremor is a serious yet frequent condition. It is often difficult to detect this process at onset due to its gradual evolution. OBJECTIVE: Here we aim to identify clinical and neuroimaging hallmarks of delayed therapy escape. METHODS: We retrospectively studied operationalized and quantitative analyses of tremor and gait, as well as [18F]fluorodeoxyglucose (FDG) PET of 12 patients affected by therapy escape. All examinations were carried out with activated DBS (ON) and 72 h after deactivation (OFF72h); gait and tremor were also analyzed directly after deactivation (OFF0h). Changes of normalized glucose metabolism between stimulation conditions were assessed using within-subject analysis of variance and statistical parametric mapping. Additionally, a comparison to the [18F]FDG PET of an age-matched control group was performed. Exploratory correlation analyses were conducted with operationalized and parametric clinical data. RESULTS: Of the immediately accessible parametric tremor data (i.e. ON or OFF0h) only the rebound (i.e. OFF0h) frequency of postural tremor showed possible correlations with signs of ataxia at ON. Regional glucose metabolism was significantly increased bilaterally in the thalamus and dentate nucleus in ON compared to OFF72h. No differences in regional glucose metabolism were found in patients in ON and OFF72h compared with the healthy controls. CONCLUSIONS: Rebound frequency of postural tremor seems to be a good diagnostic marker for delayed therapy escape. Regional glucose metabolism suggests that this phenomenon may be associated with increased metabolic activity in the thalamus and dentate nucleus possibly due to antidromic stimulation effects. We see reasons to interpret the delayed therapy escape phenomenon as being related to long term and chronic DBS.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/diagnóstico por imagem , Tremor Essencial/terapia , Estimulação Encefálica Profunda/métodos , Estudos Retrospectivos , Tálamo/diagnóstico por imagem , Tálamo/fisiologia , Tremor , Glucose , Resultado do Tratamento
2.
Clin Park Relat Disord ; 6: 100141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345471

RESUMO

In this case study with video and neurophysiology, we describe a rare case of hemimyorhythmia occurring 4 months after a stroke with bilateral affection of the thalamus and right superior cerebellar peduncle (Guillain-Mollaret-triangle). This case and especially the video with the clinical and EMG presentation of a synchronous rhythmic pattern at 3,1 Hz makes an important educational contribution to the recognition of myorhythmia and discussed differential diagnoses.

3.
Front Neurol ; 12: 722762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630296

RESUMO

Background: Magnetic resonance-guided high-intensity focused ultrasound (MRgHiFUS) has evolved into a viable ablative treatment option for functional neurosurgery. However, it is not clear yet, how this new technology should be integrated into current and established clinical practice and a consensus should be found about recommended indications, stereotactic targets, patient selection, and outcome measurements. Objective: To sum up and unify current knowledge and clinical experience of Swiss neurological and neurosurgical communities regarding MRgHiFUS interventions for brain disorders to be published as a national consensus paper. Methods: Eighteen experienced neurosurgeons and neurologists practicing in Switzerland in the field of movement disorders and one health physicist representing 15 departments of 12 Swiss clinical centers and 5 medical societies participated in the workshop and contributed to the consensus paper. All experts have experience with current treatment modalities or with MRgHiFUS. They were invited to participate in two workshops and consensus meetings and one online meeting. As part of workshop preparations, a thorough literature review was undertaken and distributed among participants together with a list of relevant discussion topics. Special emphasis was put on current experience and practice, and areas of controversy regarding clinical application of MRgHiFUS for functional neurosurgery. Results: The recommendations addressed lesioning for treatment of brain disorders in general, and with respect to MRgHiFUS indications, stereotactic targets, treatment alternatives, patient selection and management, standardization of reporting and follow-up, and initialization of a national registry for interventional therapies of movement disorders. Good clinical evidence is presently only available for unilateral thalamic lesioning in treating essential tremor or tremor-dominant Parkinson's disease and, to a minor extent, for unilateral subthalamotomy for Parkinson's disease motor features. However, the workgroup unequivocally recommends further exploration and adaptation of MRgHiFUS-based functional lesioning interventions and confirms the need for outcome-based evaluation of these approaches based on a unified registry. MRgHiFUS and DBS should be evaluated by experts familiar with both methods, as they are mutually complementing therapy options to be appreciated for their distinct advantages and potential. Conclusion: This multidisciplinary consensus paper is a representative current recommendation for safe implementation and standardized practice of MRgHiFUS treatments for functional neurosurgery in Switzerland.

4.
Sci Rep ; 11(1): 2138, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33483554

RESUMO

Deep brain stimulation of the subthalamic nucleus (STN-DBS) alleviates motor symptoms in Parkinson's disease (PD) but also affects the prefrontal cortex (PFC), potentially leading to cognitive side effects. The present study tested alterations within the rostro-caudal hierarchy of neural processing in the PFC induced by STN-DBS in PD. Granger-causality analyses of fast functional near-infrared spectroscopy (fNIRS) measurements were used to infer directed functional connectivity from intrinsic PFC activity in 24 PD patients treated with STN-DBS. Functional connectivity was assessed ON stimulation, in steady-state OFF stimulation and immediately after the stimulator was switched ON again. Results revealed that STN-DBS significantly enhanced the rostro-caudal hierarchical organization of the PFC in patients who had undergone implantation early in the course of the disease, whereas it attenuated the rostro-caudal hierarchy in late-implanted patients. Most crucially, this systematic network effect of STN-DBS was reproducible in the second ON stimulation measurement. Supplemental analyses demonstrated the significance of prefrontal networks for cognitive functions in patients and matched healthy controls. These findings show that the modulation of prefrontal functional networks by STN-DBS is dependent on the disease duration before DBS implantation and suggest a neurophysiological mechanism underlying the side effects on prefrontally-guided cognitive functions observed under STN-DBS.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/fisiopatologia , Córtex Pré-Frontal/fisiopatologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Neurológicos , Doença de Parkinson/terapia , Reprodutibilidade dos Testes , Espectroscopia de Luz Próxima ao Infravermelho/métodos
5.
Stereotact Funct Neurosurg ; 99(1): 48-54, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33075799

RESUMO

Deep brain stimulation (DBS) is a complex surgical procedure that requires detailed anatomical knowledge. In many fields of neurosurgery navigation systems are used to display anatomical structures during an operation to aid performing these surgeries. In frame-based DBS, the advantage of visualization has not yet been evaluated during the procedure itself. In this study, we added live visualization to a frame-based DBS system, using a standard navigation system and investigated its accuracy and potential use in DBS surgery. As a first step, a phantom study was conducted to investigate the accuracy of the navigation system in conjunction with a frame-based approach. As a second step, 5 DBS surgeries were performed with this combined approach. Afterwards, 3 neurosurgeons and 2 neurologists with different levels of experience evaluated the potential use of the system with a questionnaire. Moreover, the additional personnel, costs and required set up time were noted and compared to 5 consecutive standard procedures. In the phantom study, the navigation system showed an inaccuracy of 2.1 mm (mean SD 0.69 mm). In the questionnaire, a mean of 9.4/10 points was awarded for the use of the combined approach as a teaching tool, a mean of 8.4/10 for its advantage in creating a 3-dimensional (3-D) map and a mean of 8/10 points for facilitating group discussions. Especially neurosurgeons and neurologists in training found it useful to better interpret clinical results and side effects (mean 9/10 points) and neurosurgeons appreciated its use to better interpret microelectrode recordings (mean 9/10 points). A mean of 6/10 points was awarded when asked if the benefits were worth the additional efforts. Initially 2 persons, then one additional person was required to set up the system with no relevant added time or costs. Using a navigation system for live visualization during frame-based DBS surgery can improve the understanding of the complex 3-D anatomy and many aspects of the procedure itself. For now, we would regard it as an excellent teaching tool rather than a necessity to perform DBS surgeries.


Assuntos
Estimulação Encefálica Profunda/normas , Neuronavegação/normas , Neurocirurgiões/normas , Técnicas Estereotáxicas/normas , Estimulação Encefálica Profunda/métodos , Eletrodos Implantados/normas , Feminino , Humanos , Imageamento Tridimensional/métodos , Imageamento Tridimensional/normas , Masculino , Microeletrodos/normas , Transtornos dos Movimentos/diagnóstico por imagem , Transtornos dos Movimentos/cirurgia , Neuronavegação/métodos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/normas , Imagens de Fantasmas/normas
6.
Neuroimage Clin ; 28: 102376, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32889400

RESUMO

The identification of oscillatory neural markers of Parkinson's disease (PD) can contribute not only to the understanding of functional mechanisms of the disorder, but may also serve in adaptive deep brain stimulation (DBS) systems. These systems seek online adaptation of stimulation parameters in closed-loop as a function of neural markers, aiming at improving treatment's efficacy and reducing side effects. Typically, the identification of PD neural markers is based on group-level studies. Due to the heterogeneity of symptoms across patients, however, such group-level neural markers, like the beta band power of the subthalamic nucleus, are not present in every patient or not informative about every patient's motor state. Instead, individual neural markers may be preferable for providing a personalized solution for the adaptation of stimulation parameters. Fortunately, data-driven bottom-up approaches based on machine learning may be utilized. These approaches have been developed and applied successfully in the field of brain-computer interfaces with the goal of providing individuals with means of communication and control. In our contribution, we present results obtained with a novel supervised data-driven identification of neural markers of hand motor performance based on a supervised machine learning model. Data of 16 experimental sessions obtained from seven PD patients undergoing DBS therapy show that the supervised patient-specific neural markers provide improved decoding accuracy of hand motor performance, compared to group-level neural markers reported in the literature. We observed that the individual markers are sensitive to DBS therapy and thus, may represent controllable variables in an adaptive DBS system.


Assuntos
Estimulação Encefálica Profunda , Aprendizado de Máquina , Doença de Parkinson , Núcleo Subtalâmico , Mãos , Humanos , Doença de Parkinson/terapia
7.
Acta Neurochir (Wien) ; 162(5): 1053-1066, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31997069

RESUMO

INTRODUCTION: Deep brain stimulation alleviates tremor of various origins. The dentato-rubro-thalamic tract (DRT) has been suspected as a common tremor-reducing structure. Statistical evidence has not been obtained. We here report the results of an uncontrolled case series of patients with refractory tremor who underwent deep brain stimulation under tractographic assistance. METHODS: A total of 36 patients were enrolled (essential tremor (17), Parkinson's tremor (8), multiple sclerosis (7), dystonic head tremor (3), tardive dystonia (1)) and received 62 DBS electrodes (26 bilateral; 10 unilateral). Preoperatively, diffusion tensor magnetic resonance imaging sequences were acquired together with high-resolution anatomical T1W and T2W sequences. The DRT was individually tracked and used as a direct thalamic or subthalamic target. Intraoperative tremor reduction was graded on a 4-point scale (0 = no tremor reduction to 3 = full tremor control) and recorded together with the current amplitude, respectively. Stimulation point coordinates were recorded and compared to DRT. The relation of the current amplitude needed to reduce tremor was expressed as TiCR (tremor improvement per current ratio). RESULTS: Stimulation points of 241 were available for analysis. A total of 68 trajectories were tested (62 dB leads, 1.1 trajectories tested per implanted lead). Tremor improvement was significantly decreasing (p < 0.01) if the distance to both the border and the center of the DRT was increasing. On the initial trajectory, 56 leads (90.3%) were finally placed. Long-term outcomes were not part of this analysis. DISCUSSION: Tremor of various origins was acutely alleviated at different points along the DRT fiber tract (above and below the MCP plane) despite different tremor diseases. DRT is potentially a common tremor-reducing structure. Individual targeting helps to reduce brain penetrating tracts. TiCR characterizes stimulation efficacy and might help to identify an optimal stimulation point.


Assuntos
Estimulação Encefálica Profunda/métodos , Imagem de Tensor de Difusão/métodos , Tremor Essencial/terapia , Esclerose Múltipla/terapia , Tálamo/cirurgia , Tremor/terapia , Idoso , Tremor Essencial/diagnóstico por imagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Esclerose Múltipla/diagnóstico por imagem , Tálamo/diagnóstico por imagem , Tremor/diagnóstico por imagem
8.
IEEE Trans Neural Syst Rehabil Eng ; 27(10): 2155-2163, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31536010

RESUMO

For Parkinson's disease (PD), efficient and fast monitoring of fine motor function is fundamental for capturing transient phenomena induced by deep brain stimulation (DBS), thus, enabling a fast and accurate tuning of stimulation parameters. Tuning of DBS parameters is important for obtaining a patient-specific optimal clinical effect and to regularly compensate for disease progress. We propose a fine motor function assessment framework for capturing transient DBS-induced changes. The main goals are to obtain a fast, repeatable, objective, robust, and DBS-sensitive motor-score, in addition to a high-dimensional characterization of motor components by means of an interpretable data-driven model. To achieve this, we combine a hand motor-task, termed the copy-draw test, with a linear model for analyzing features extracted from the proposed task. The approach was tested with four patients totaling eight sessions analyzed. Our approach delivers a motor-score that is sensitive to DBS-induced changes in motor function. It can be applied repeatedly within seconds. The interpretability of the underlying machine learning model provides a direct overview of the feature relevance. This analysis allows to detect and characterize single movement components that are sensitive to DBS. The proposed assessment framework is an useful tool to push forward the data-driven identification of PD-relevant neural markers. Consequent to this end, the source code of the paradigm is made publicly available.


Assuntos
Estimulação Encefálica Profunda/métodos , Mãos , Doença de Parkinson/reabilitação , Desempenho Psicomotor , Adulto , Algoritmos , Antiparkinsonianos/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Feminino , Humanos , Modelos Lineares , Aprendizado de Máquina , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/fisiopatologia , Núcleo Subtalâmico
9.
Oper Neurosurg (Hagerstown) ; 17(5): 497-502, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860266

RESUMO

BACKGROUND: Automatic segmentation is gaining relevancy in image-based targeting of neural structures. OBJECTIVE: To evaluate its feasibility, we retrospectively analyzed the concordance of magnetic resonance imaging (MRI)-based automatic segmentation of the subthalamic nucleus (STN) and intraoperative microelectrode recordings (MERs). METHODS: Electrodes (n = 60) for deep brain stimulation were implanted in the STN of patients (n = 30; median age 57 yr) with Parkinson disease (n = 29) or rapid-onset dystonia parkinsonism (n = 1). Elements (Brainlab, Munich, Germany) were used to segment the STN, using 2 volumetric T1 (±contrast) and volumetric T2 images as input. The stereotactic computed tomography was coregistered with the imaging, and the original stereotactic coordinates were imported. MERs (0.5-1 mm steps) along the anterior, central, and lateral trajectories were used to determine differences between the image-segmented STN boundary and MER-based STN entry and exit. RESULTS: Of 175 trajectories, 105 penetrated or touched (≤0.7 mm) the STN. The overall median deviation between the segmented STN boundary and electrophysiological recordings was 1.1 mm for MER-based STN entry and 2.0 mm for STN exit. Regarding the entry point of the STN, there was no statistically significant difference between MRI-based automatic segmentation and the electrophysiological trajectories analyzed with intraoperative MER. The exit point was significantly different between both methods in the central and lateral trajectories. CONCLUSION: MRI-based automatic segmentation of the STN is a viable, patient-specific targeting approach that can be used alongside traditional targeting methods in deep brain stimulation to support preoperative planning and visualization of target structures and aid postoperative optimization of programming.


Assuntos
Estimulação Encefálica Profunda , Distúrbios Distônicos/terapia , Microeletrodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/diagnóstico por imagem , Núcleo Subtalâmico/cirurgia , Adulto , Idoso , Fenômenos Eletrofisiológicos , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Neuroestimuladores Implantáveis , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Implantação de Prótese/métodos , Núcleo Subtalâmico/fisiologia
10.
J Neurol Surg A Cent Eur Neurosurg ; 80(1): 44-48, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30290379

RESUMO

INTRODUCTION: A 28-year-old man presented with a history of sensorineural deafness since early childhood treated with bilateral cochlear implants (CIs). He showed signs of debilitating dystonia that had been present since puberty. Dystonic symptoms, especially a protrusion of the tongue and bilateral hand tremor, had not responded to botulinum toxin therapy. We diagnosed Mohr-Tranebjaerg syndrome (MTS). METHODS AND MATERIAL: Deep brain stimulation (DBS) of the bilateral globus pallidus internus was performed predominantly with stereotaxic computed tomography angiography guidance under general anesthesia. Electrophysiology was used to identify the target regions and to guide DBS electrode placement. RESULTS: In the immediate postoperative course and stimulation, the patient showed marked improvement of facial, extremity, and cervical dystonia. More than 2 years after implantation, his dystonic symptoms had dramatically improved by 82%. DISCUSSION: MTS is a rare genetic disorder leading to sensorineural deafness, dystonia, and other symptoms. The use of DBS for the dystonia in MTS was previously described but not in the presence of bilateral CIs. CONCLUSION: DBS in MTS may be a viable option to treat debilitating dystonic symptoms. We describe successful DBS surgery, despite the presence of bilateral CIs, and stimulation therapy over 2 years.


Assuntos
Implantes Cocleares , Surdocegueira/terapia , Estimulação Encefálica Profunda , Distonia/terapia , Globo Pálido , Perda Auditiva Neurossensorial/complicações , Deficiência Intelectual/terapia , Atrofia Óptica/terapia , Adulto , Anestesia Geral , Surdocegueira/complicações , Distonia/complicações , Distonia/etiologia , Perda Auditiva Neurossensorial/terapia , Humanos , Deficiência Intelectual/complicações , Masculino , Atrofia Óptica/complicações , Resultado do Tratamento
11.
JMIR Res Protoc ; 7(1): e36, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29382631

RESUMO

BACKGROUND: Besides fluctuations, therapy refractory tremor is one of the main indications of deep brain stimulation (DBS) in patients with idiopathic Parkinson syndrome (IPS). Although thalamic DBS (ventral intermediate nucleus [Vim] of thalamus) has been shown to reduce tremor in 85-95% of patients, bradykinesia and rigidity often are not well controlled. The dentato-rubro-thalamic tract (DRT) that can directly be targeted with special diffusion tensor magnetic resonance imaging sequences has been shown as an efficient target for thalamic DBS. The subthalamic nucleus (STN) is typically chosen in younger patients as the target for dopamine-responsive motor symptoms. This study investigates a one-path thalamic (Vim/DRT) and subthalamic implantation of DBS electrodes and possibly a combined stimulation strategy for both target regions. OBJECTIVE: This study investigates a one path thalamic (Vim/DRT) and subthalamic implantation of DBS electrodes and a possibly combined stimulation strategy for both target regions. METHODS: This is a randomized, active-controlled, double-blinded (patient- and observer-blinded), monocentric trial with three treatments, three periods and six treatment sequences allocated according to a Williams design. Eighteen patients will undergo one-path thalamic (Vim/DRT) and STN implantation of DBS electrodes. After one month, a double-blinded and randomly-assigned stimulation of the thalamic target (Vim/DRT), the STN and a combined stimulation of both target regions will be performed for a period of three months each. The primary objective is to assess the quality of life obtained by the Parkinson's Disease Questionnaire (39 items) for each stimulation modality. Secondary objectives include tremor reduction (obtained by the Fahn-Tolosa-Marin tremor rating scale, video recordings, the Unified Parkinson's disease rating scale, and by tremor analysis), psychiatric assessment of patients, and to assess the safety of intervention. RESULTS: At the moment, the recruitment is stopped and 12 patients have been randomized and treated. A futility analysis is being carried out by means of a conditional power analysis. CONCLUSIONS: The approach of the OPINION trial planned to make, for the first time, a direct comparison of the different stimulation conditions (Vim/DRT, compared to STN, compared to Vim/DRT+STN) in a homogeneous patient population and, furthermore, will allow for intraindividual comparison of each condition with the "quality of life" outcome parameter. We hypothesize that the combined stimulation of the STN and the thalamic (Vim/DRT) target will be superior with respect to the patients' quality of life as compared to the singular stimulation of the individual target regions. If this holds true, this work might change the standardized treatment described in the previous section. TRIAL REGISTRATION: ClinicalTrials.gov: NCT02288468; https://clinicaltrials.gov/ct2/show/NCT02288468 (Archived by WebCite at http://www.webcitation.org/6wlKnt2pJ); and German Clinical Trials Register: DRKS00007526; https://www.drks.de/drks_ web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00007526 (Archived by WebCite at http://www.webcitation.org/6wlKyXZZL).

13.
Front Neurol ; 8: 108, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28421028

RESUMO

Niemann-Pick type C disease (NP-C) presents with heterogeneous neurological and psychiatric symptoms. Adult onset is rare and possibly underdiagnosed due to frequent lack of specific and obvious key symptoms. For both early and adolescent/adult onset, the available data from studies and case reports describe a positive effect of Miglustat (symptom relief or stabilization). However, due to the low frequency of NP-C, experience with this therapy is still limited. We describe two adult-onset cases of NP-C. In both cases, vertical supranuclear gaze palsy was not recognized at symptom onset. Correct diagnosis was delayed from onset of symptoms by more than 10 years. The video demonstrates the broad spectrum of symptoms in later stages of the disease. Compared with published data, the treatment outcome observed in our cases after delayed initiation of Miglustat therapy was disappointing, with continuing disease progression in both cases. Thus, early treatment initiation could be necessary to achieve a good symptomatic effect. Hence, early biochemical testing for NP-C should be considered in patients suffering from atypical neurological/neuropsychological and psychiatric symptoms, even in cases of uncertainty.

15.
JMIR Res Protoc ; 5(4): e244, 2016 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-28007690

RESUMO

BACKGROUND: Essential tremor is a movement disorder that can result in profound disability affecting the quality of life. Medically refractory essential tremor can be successfully reduced by deep brain stimulation (DBS) traditionally targeting the thalamic ventral intermediate nucleus (Vim). Although this structure can be identified with magnetic resonance (MR) imaging nowadays, Vim-DBS electrodes are still implanted in the awake patient with intraoperative tremor testing to achieve satisfactory tremor control. This can be attributed to the fact that the more effective target of DBS seems to be the stimulation of fiber tracts rather than subcortical nuclei like the Vim. There is evidence that current coverage of the dentatorubrothalamic tract (DRT) results in good tremor control in Vim-DBS. Diffusion tensor MR imaging (DTI) tractography-assisted stereotactic surgery targeting the DRT would therefore not rely on multiple trajectories and intraoperative tremor testing in the awake patient, bearing the potential of more patient comfort and reduced operation-related risks. This is the first randomized controlled trial comparing DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia with stereotactic surgery of thalamic/subthalamic region as conventionally used. OBJECTIVE: This clinical pilot trial aims at demonstrating safety of DTI tractography-assisted stereotactic surgery in general anesthesia and proving its equality compared to conventional stereotactic surgery with intraoperative testing in the awake patient. METHODS: The Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT) trial is a single-center investigator-initiated, randomized, controlled, observer-blinded trial. A total of 24 patients with medically refractory essential tremor will be randomized to either DTI tractography-assisted stereotactic surgery targeting the DRT in general anesthesia or stereotactic surgery of the thalamic/subthalamic region as conventionally used. The primary objective is to assess the tremor reduction, obtained by the Fahn-Tolosa-Marin Tremor Rating Scale in the 2 treatment groups. Secondary objectives include (among others) assessing the quality of life, optimal electrode contact positions, and safety of the intervention. The study protocol has been approved by the independent ethics committee of the University of Freiburg. RESULTS: Recruitment to the DISTINCT trial opened in September 2015 and is expected to close in June 2017. At the time of manuscript submission the trial is open to recruitment. CONCLUSIONS: The DISTINCT trial is the first to compare DTI tractography-assisted stereotactic surgery with target point of the DRT in general anesthesia to stereotactic surgery of the thalamic/subthalamic region as conventionally used. It can serve as a cornerstone for the evolving technique of DTI tractography-assisted stereotactic surgery. CLINICALTRIAL: ClinicalTrials.gov NCT02491554; https://clinicaltrials.gov/ct2/show/NCT02491554 (Archived by WebCite at http://www.webcitation.org/6mezLnB9D). German Clinical Trials Register DRKS00008913; http://drks-neu.uniklinik-freiburg.de/drks_web/navigate.do?navigationId=trial.HTML&TRIAL_ID=DRKS00008913 (Archived by WebCite at http://www.webcitation.org/6mezCtxhS).

16.
Acta Neurochir (Wien) ; 158(4): 773-781, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26876564

RESUMO

BACKGROUND: Refractory tremor in tremor-dominant (TD) or equivalent-type (EQT) idiopathic Parkinson's syndrome (IPS) poses the challenge of choosing the best target region to for deep brain stimulation (DBS). While the subthalamic nucleus is typically chosen in younger patients as the target for dopamine-responsive motor symptoms, it is more complicated if tremor does not (fully) respond under trial conditions. In this report, we present the first results from simultaneous bilateral DBS of the DRT (dentato-rubro-thalamic tract) and the subthalamic nucleus (STN) in two elderly patients with EQT and TD IPS and dopamine-refractory tremor. METHODS: Two patients received bilateral octopolar DBS electrodes in the STN additionally traversing the DRT region. Achieved electrode positions were determined with helical CT, overlaid onto DTI tractography data, and compared with clinical data of stimulation response. RESULTS: Both patients showed immediate and sustained improvement of their tremor, bilaterally. CONCLUSIONS: The proposed approach appears to be safe and feasible and a combined stimulation of the two target regions was performed tailored to the patients' symptoms. Clinically, no neuropsychiatric effects were seen. Our pilot data suggest a viable therapeutic option to treat the subgroup of TD and EQT IPS and with tremor as the predominant symptom. A clinical study to further investigate this approach ( OPINION: www.clinicaltrials.gov ; NCT02288468) is the focus of our ongoing research.


Assuntos
Estimulação Encefálica Profunda/métodos , Doença de Parkinson/terapia , Núcleo Subtalâmico/fisiopatologia , Tálamo/fisiopatologia , Tremor/terapia , Idoso , Feminino , Humanos , Masculino , Vias Neurais/fisiopatologia , Doença de Parkinson/fisiopatologia , Resultado do Tratamento , Tremor/fisiopatologia
17.
Cell Transplant ; 23(8): 995-1007, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23635602

RESUMO

Restorative cell therapy concepts in neurodegenerative diseases are aimed at replacing lost neurons. Despite advances in research on pluripotent stem cells, fetal tissue from routine elective abortions is still regarded as the only safe cell source. Progenitor cells isolated from distinct first-trimester fetal CNS regions have already been used in clinical trials and will be used again in a new multicenter trial funded by the European Union (TRANSEURO). Bacterial contamination of human fetal tissue poses a potential risk of causing infections in the brain of the recipient. Thus, effective methods of microbial decontamination and validation of these methods are required prior to approval of a neurorestorative cell therapy trial. We have developed a protocol consisting of subsequent washing steps at different stages of tissue processing. Efficacy of microbial decontamination was assessed on rat embryonic tissue incubated with high concentrations of defined microbe solutions including representative bacterial and fungal species. Experimental microbial contamination was reduced by several log ranks. Subsequently, we have analyzed the spectrum of microbial contamination and the effect of subsequent washing steps on aborted human fetal tissue; 47.7% of the samples taken during human fetal tissue processing were positive for a microbial contamination, but after washing, no sample exhibited bacterial growth. Our data suggest that human fetal tissue for neural repair can carry microbes of various species, highlighting the need for decontamination procedures. The decontamination protocol described in this report has been shown to be effective as no microbes could be detected at the end of the procedure.


Assuntos
Transplante de Tecido Encefálico/métodos , Encéfalo/embriologia , Encéfalo/microbiologia , Descontaminação/métodos , Transplante de Tecido Fetal/métodos , Doenças Neurodegenerativas/terapia , Animais , Humanos , Ratos , Resultado do Tratamento
18.
Front Neurol ; 4: 198, 2013 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-24367353

RESUMO

In the past, many studies have documented the beneficial effects of deep brain stimulation (DBS) in the globus pallidus internus for treatment of primary segmental or generalized dystonia. Recently however, several reports focused on DBS-induced hypokinesia or freezing of gait (FOG) as a side effect in these patients. Here we report on two patients suffering from FOG after successful treatment of their dystonic movement disorder with pallidal high frequency stimulation (HFS). Several attempts to reduce the FOG resulted in worsening of the control of dystonia. In one patient levodopa treatment was initialized which was somewhat successful to relieve FOG. We discuss the possible mechanisms of hypokinetic side effects of pallidal DBS which can be explained by the hypothesis of selective GABA release as the mode of action of HFS. Pallidal HFS is also effective in treating idiopathic Parkinson's disease as a hypokinetic disorder which at first sight seems to be a paradox. In our view, however, the GABAergic hypothesis can explain this and other clinical observations.

19.
Behav Brain Res ; 256: 56-63, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23916743

RESUMO

Neural cell replacement therapy using fetal striatal cells has provided evidence of disease modification in clinical trials in Huntington's disease (HD) patients, although the results have been inconsistent. One of the contributing factors to the variable outcome could be the different capacity of transplanted cells derived from the primordial striatum to proliferate and maturate into striatal projection neurons. Based on the rodent lesion model of HD, the current study investigated how intrastriatal-striatal grafts from variable aged donors develop in vivo and how they influence functional recovery. Young adult female Sprague-Dawley rats were lesioned unilaterally in the dorso-striatum with quinolinic acid (0.12 M) and transplanted 14 days later with single cell suspension grafts equivalent of one whole ganglionic eminence (WGE) from donors of embryonic developmental age E13, E14, or E15; animals with or without striatal lesion served as controls. All animals were tested on the Cylinder and the Corridor tests, as well as on apomorphine-induced rotation at baseline, post-lesion/pre-grafting, and at 6 and 10 weeks post-grafting. A week prior to perfusion, a sub-group in each grafted group received fluorogold injections into the ipsilateral globus pallidus to study graft efferent projections. In summary, the data demonstrates that the age of the embryonic donor tissue has an impact on both the graft mediated functional recovery, and on the in vivo cellular composition of the striatal transplant. E13 tissue grafts gave the best overall outcome indicating that WGE from different donor ages have different potential to promote functional recovery. Understanding the stages and process in rodent striatal development could improve tissue selection in clinical trials of cell therapy in HD.


Assuntos
Transplante de Tecido Encefálico/métodos , Transplante de Tecido Fetal/métodos , Doença de Huntington/fisiopatologia , Doença de Huntington/terapia , Recuperação de Função Fisiológica/fisiologia , Fatores Etários , Animais , Apomorfina/farmacologia , Corpo Estriado/patologia , Corpo Estriado/fisiopatologia , Modelos Animais de Doenças , Agonistas de Dopamina/farmacologia , Feminino , Globo Pálido/patologia , Globo Pálido/fisiopatologia , Doença de Huntington/patologia , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Ácido Quinolínico , Ratos Sprague-Dawley
20.
Front Neuroanat ; 7: 54, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24474906

RESUMO

The subpallium comprises large parts of the basal ganglia including striatum and globus pallidus. Genes and factors involved in the development of the subpallium have been extensively studied in most vertebrates, including amphibians, birds, and rodents. However, our knowledge on patterning of the human subpallium remains insufficient. Using double fluorescent immunohistochemistry, we investigated the protein distribution of transcription factors involved in patterning of the subventricular zone (SVZ) in the human forebrain at late embryonic development. Furthermore, we compared the development of cortical and striatal precursors between human fetal brain and E14 and E16 fetal rat brains. Our results reveal that DLX2 marks SVZ precursors in the entire subpallium. Individual subpallial subdomains can be identified based on co-expression of DLX2 with either PAX6 or NKX2-1. SVZ precursors in the dorsal LGE and preopto-hypothalamic boundary are characterized by DLX2/PAX6 co-expression, while precursors in the MGE and preoptic region co-express DLX2/NKX2-1. SVZ precursors in the ventral LGE are DLX2(+)/PAX6(-)/NKX2-1(-). In terms of staging comparisons, the development of the corpus striatum in the human fetal brain during late embryonic stages corresponds well with the development of the striatum observed in E14 fetal rat brains. Our study demonstrates that the pattern underlying the development of the subpallium is highly conserved between rodents and humans and suggests a similar function for these factors in human brain development. Moreover, our data directly influence the application of ganglionic eminence derived human tissue for cell therapeutic approaches in neurodegenerative disorders such as Huntington's disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...