Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS Lett ; 598(7): 743-757, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38369668

RESUMO

Kainate receptors belong to the family of ionotropic glutamate receptors and contribute to the majority of fast excitatory neurotransmission. Consequently, they also play a role in brain diseases. Therefore, understanding how these receptors can be modulated is of importance. Our study provides a crystal structure of the dimeric ligand-binding domain of the kainate receptor GluK2 in complex with L-glutamate and the small-molecule positive allosteric modulator, BPAM344, in an active-like conformation. The role of Thr535 and Gln786 in modulating GluK2 by BPAM344 was investigated using a calcium-sensitive fluorescence-based assay on transiently transfected cells expressing GluK2 and mutants hereof. This study may aid in the design of compounds targeting kainate receptors, expanding their potential as targets for the treatment of brain diseases.


Assuntos
Encefalopatias , Óxidos S-Cíclicos , Ácido Glutâmico , Tiazinas , Humanos , Sítios de Ligação , Ligantes , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/química , Receptores de Ácido Caínico/metabolismo
2.
Eur J Med Chem ; 264: 116036, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38101041

RESUMO

The synthesis and biological evaluation on AMPA and kainate receptors of new examples of 3,4-dihydro-2H-1,2,4-thieno[3,2-e]-1,2,4-thiadiazine 1,1-dioxides is described. The introduction of a cyclopropyl chain instead of an ethyl chain at the 4-position of the thiadiazine ring was found to dramatically improve the potentiator activity on AMPA receptors, with compound 32 (BPAM395) expressing in vitro activity on AMPARs (EC2x = 0.24 µM) close to that of the reference 4-cyclopropyl-substituted benzothiadiazine dioxide 10 (BPAM344). Interestingly, the 4-allyl-substituted thienothiadiazine dioxide 27 (BPAM307) emerged as the most promising compound on kainate receptors being a more effective potentiator than the 4-cyclopropyl-substituted thienothiadiazine dioxide 32 and supporting the view that the 4-allyl substitution of the thiadiazine ring could be more favorable than the 4-cyclopropyl substitution to induce marked activity on kainate receptors versus AMPA receptors. The thieno-analogue 36 (BPAM279) of the clinically tested S18986 (11) was selected for in vivo evaluation in mice as a cognitive enhancer due to a safer profile than 32 after massive per os drug administration. Compound 36 was found to increase the cognition performance in mice at low doses (1 mg/kg) per os suggesting that the compound was well absorbed after oral administration and able to reach the central nervous system. Finally, compound 32 was selected for co-crystallization with the GluA2-LBD (L504Y,N775S) and glutamate to examine the binding mode of thienothiadiazine dioxides within the allosteric binding site of the AMPA receptor. At the allosteric site, this compound established similar interactions as the previously reported BTD-type AMPA receptor modulators.


Assuntos
Receptores de AMPA , Tiadiazinas , Camundongos , Animais , Receptores de AMPA/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/farmacologia , Receptores de Ácido Caínico/metabolismo , Relação Estrutura-Atividade , Tiadiazinas/química , Regulação Alostérica
3.
FEBS J ; 291(7): 1506-1529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38145505

RESUMO

The kainate receptors GluK1-3 (glutamate receptor ionotropic, kainate receptors 1-3) belong to the family of ionotropic glutamate receptors and are essential for fast excitatory neurotransmission in the brain, and are associated with neurological and psychiatric diseases. How these receptors can be modulated by small-molecule agents is not well understood, especially for GluK3. We show that the positive allosteric modulator BPAM344 can be used to establish robust calcium-sensitive fluorescence-based assays to test agonists, antagonists, and positive allosteric modulators of GluK1-3. The half-maximal effective concentration (EC50) of BPAM344 for potentiating the response of 100 µm kainate was determined to be 26.3 µm for GluK1, 75.4 µm for GluK2, and 639 µm for GluK3. Domoate was found to be a potent agonist for GluK1 and GluK2, with an EC50 of 0.77 and 1.33 µm, respectively, upon co-application of 150 µm BPAM344. At GluK3, domoate acts as a very weak agonist or antagonist with a half-maximal inhibitory concentration (IC50) of 14.5 µm, in presence of 500 µm BPAM344 and 100 µm kainate for competition binding. Using H523A-mutated GluK3, we determined the first dimeric structure of the ligand-binding domain by X-ray crystallography, allowing location of BPAM344, as well as zinc-, sodium-, and chloride-ion binding sites at the dimer interface. Molecular dynamics simulations support the stability of the ion sites as well as the involvement of Asp761, Asp790, and Glu797 in the binding of zinc ions. Using electron microscopy, we show that, in presence of glutamate and BPAM344, full-length GluK3 adopts a dimer-of-dimers arrangement.


Assuntos
Ácido Caínico , Receptores de Ácido Caínico , Tiazinas , Receptores de Ácido Caínico/genética , Receptores de Ácido Caínico/agonistas , Ácido Caínico/farmacologia , Óxidos S-Cíclicos , Zinco/metabolismo
4.
JACC Basic Transl Sci ; 8(11): 1439-1453, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38093743

RESUMO

In addition to its potent antiplatelet activity, ticagrelor possesses antibacterial properties against gram-positive bacteria. We wondered whether the typical clinical dosage of ticagrelor could prevent the development of infective endocarditis caused by highly virulent Staphylococcus aureus. Ticagrelor prevented vegetation formation in a mouse model of inflammation-induced endocarditis. The dosage achieved in patients under ticagrelor therapy altered bacterial toxin production and adherence on activated endothelial cells, thereby mitigating bacterial virulence. Besides the previously described bactericidal activity at high doses, ticagrelor at typical clinical doses possesses antivirulence activity against S aureus. Ticagrelor antiplatelet activity further interferes with the interplay between platelets and bacteria.

5.
RSC Med Chem ; 14(4): 715-733, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37122550

RESUMO

Because of the threat of resistant Plasmodium sp., new orally active antimalarials are urgently needed. Inspired by the structure of ellagic acid, exhibiting potent in vivo and in vitro antiplasmodial effects, polyphenolic structures possessing a similar activity-safety profile were synthesized. Indeed, most exhibited a marked in vitro effect (IC50 < 4 µM) on resistant P. falciparum, without any detrimental effects reported during the toxicity assays (hemolysis, cytotoxicity, in vivo). In addition, they possessed a greater hydrosolubility (from 7 µM to 2.7 mM) compared to ellagic acid. Among them, 30 is the most promising for antimalarial purposes since it displayed a significant parasitaemia reduction after oral administration in mice (50 mg kg-1) compared to the orally ineffective ellagic acid. In conclusion, our investigations led to the identification of a promising scaffold, which could bring new insights for malaria treatment.

6.
Eur J Med Chem ; 250: 115221, 2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36863228

RESUMO

Positive allosteric modulators of the AMPA receptors (AMPAR PAMs) have been proposed as new drugs for the management of various neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, attention deficit hyperactivity disorder, depression, and schizophrenia. The present study explored new AMPAR PAMs belonging to 3,4-dihydro-2H-1,2,4-benzothiadiazine 1,1-dioxides (BTDs) characterized by the presence of a short alkyl substituent at the 2-position of the heterocycle and by the presence or absence of a methyl group at the 3-position. The introduction of a monofluoromethyl or a difluoromethyl side chain at the 2-position instead of the methyl group was examined. 7-Chloro-4-cyclopropyl-2-fluoromethyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (15e) emerged as the most promising compound associating high in vitro potency on AMPA receptors, a favorable safety profile in vivo and a marked efficacy as a cognitive enhancer after oral administration in mice. Stability studies in aqueous medium suggested that 15e could be considered, at least in part, as a precursor of the corresponding 2-hydroxymethyl-substituted analogue and the known AMPAR modulator 7-chloro-4-cyclopropyl-3,4-dihydro-4H-1,2,4-benzothiadiazine 1,1-dioxide (3) devoid of an alkyl group at the 2-position.


Assuntos
Receptores de AMPA , Tiadiazinas , Camundongos , Animais , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico , Receptores de AMPA/metabolismo , Tiadiazinas/farmacologia , Tiadiazinas/química , Benzotiadiazinas/farmacologia , Benzotiadiazinas/química , Tiazidas , Regulação Alostérica
7.
Med Chem ; 19(3): 276-296, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35986548

RESUMO

AIMS: The present work describes the synthesis and the biological evaluation of novel compounds acting as pyruvate dehydrogenase kinase (PDK) inhibitors. These drugs should become a new therapeutic approach for the treatment of pathologies improved by the control of the blood lactate level. METHODS: Four series of compounds belonging to N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2- methylpropanamides and 1,2,4-benzothiadiazine 1,1-dioxides were prepared and evaluated as PDK inhibitors. RESULTS: The newly synthesized N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-methylpropanamides structurally related to previously reported reference compounds 4 and 5 were found to be potent PDK inhibitors (i.e. 10d: IC50 = 41 nM). 1,2,4-Benzothiadiazine 1,1-dioxides carrying a (methyl/ trifluoromethyl)-propanamide moiety at the 6-position were also designed as conformationally restricted ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl)phenyl)-2-hydroxy-2-methylpropanamides. Most of them were found to be less potent than their ring-opened analogues. Interestingly, the best choice of hydrocarbon side chain at the 4-position was the benzyl chain, providing 11c (IC50 = 3.6 µM) belonging to "unsaturated" 1,2,4-benzothiadiazine 1,1-dioxides, and 12c (IC50 = 0.5 µM) belonging to "saturated' 1,2,4-benzothiadiazine 1,1-dioxides. CONCLUSION: This work showed that ring-closed analogues of N-(4-(N-alkyl/aralkylsulfamoyl) phenyl)- 2-hydroxy-2-methylpropanamides were less active as PDK inhibitors than their corresponding ring-opened analogues. However, the introduction of a bulkier substituent at the 4-position of the 1,2,4-benzothiadiazine 1,1-dioxide core structure, such as a benzyl or a phenethyl side chain, was allowed, opening the way to the design of new inhibitors with improved PDK inhibitory activity.


Assuntos
Benzotiadiazinas , Tiazidas , Benzotiadiazinas/química , Benzotiadiazinas/farmacologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Relação Estrutura-Atividade
8.
Med Chem ; 18(8): 884-894, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35189799

RESUMO

AIMS: The present study aimed at characterizing the impact of the presence or absence of fluorine atoms on the phenyl and benzopyran rings of 4-phenyl(thio)ureido-substituted 2,2- dimethylchromans on their ability to inhibit insulin release from pancreatic ß-cells or to relax vascular smooth muscle cells. METHODS: Most compounds were found to inhibit insulin secretion and to provoke a marked myorelaxant activity. RESULTS: The lack of a fluorine or chlorine atom at the 6-position of the 2,2-dimethylchroman core structure reduced the inhibitory activity on the pancreatic endocrine tissue. One of the most active compounds on both tissues, compound 11h (BPDZ 678), was selected for further pharmacological investigations. CONCLUSION: The biological data suggested that 11h mainly expressed the profile of a KATP channel opener on pancreatic ß-cells, although a calcium entry blockade effect was also observed. On vascular smooth muscle cells, 11h behaved as a calcium entry blocker.


Assuntos
Cálcio , Insulina , Animais , Aorta/fisiologia , Flúor/farmacologia , Insulina/metabolismo , Músculo Liso/metabolismo , Canais de Potássio/farmacologia , Ratos , Ratos Wistar , Relação Estrutura-Atividade
9.
Arch Pharm (Weinheim) ; 354(11): e2100190, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34346088

RESUMO

With more than 200 million cases and 400,000 related deaths, malaria remains one of the deadliest infectious diseases of 2021. Unfortunately, despite the availability of efficient treatments, we have observed an increase in people infected with malaria since 2015 (from 211 million in 2015 to 229 million in 2019). This trend could partially be due to the development of resistance to all the current drugs. Therefore, there is an urgent need for new alternatives. We have, thus, selected common natural scaffolds, polyhydroxybenzoic acids, and synthesized a library of derivatives to better understand the structure-activity relationships explaining their antiplasmodial effect. Only gallic acid derivatives showed a noticeable potential for further developments. Indeed, they showed a selective inhibitory effect on Plasmodium (IC50 ~20 µM, SI > 5) often associated with interesting water solubility. Moreover, this has confirmed the critical importance of free phenolic functions (pyrogallol moiety) for the antimalarial effect. Methyl 4-benzoxy-3,5-dihydroxybenzoate (39) has, for the first time, been recognized as a potential lead for future research because of its marked inhibitory activity against Plasmodium falciparum and its significant hydrosolubility (3.72 mM).


Assuntos
Antimaláricos/farmacologia , Hidroxibenzoatos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/síntese química , Antimaláricos/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Hidroxibenzoatos/síntese química , Hidroxibenzoatos/química , Concentração Inibidora 50 , Malária Falciparum/tratamento farmacológico , Malária Falciparum/parasitologia , Relação Estrutura-Atividade
10.
ACS Chem Neurosci ; 12(14): 2679-2692, 2021 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-34242002

RESUMO

On the basis of the activity of 1,2,4-benzothiadiazine 1,1-dioxides as positive allosteric modulators of AMPA receptors, thiochroman 1,1-dioxides were designed applying the isosteric replacement concept. The new compounds expressed strong modulatory activity on AMPA receptors in vitro, although lower than their corresponding benzothiadiazine analogues. The pharmacokinetic profile of three thiochroman 1,1-dioxides (12a, 12b, 12e) was examined in vivo after oral administration, showing that these compounds freely cross the blood-brain barrier. Structural analysis was achieved using X-ray crystallography after cocrystallization of the racemic compound 12b in complex with the ligand-binding domain of GluA2 (L504Y/N775S). Interestingly, both enantiomers of 12b were found to interact with the GluA2 dimer interface, almost identically to its benzothiadiazine analogue, BPAM344 (4). The interactions of the two enantiomers in the cocrystal were further analyzed (mapping Hirshfeld surfaces and 2D fingerprint) and compared to those of 4. Taken together, these data explain the lower affinity on AMPA receptors of thiochroman 1,1-dioxides compared to their corresponding 1,2,4-benzothiadiazine 1,1-dioxides.


Assuntos
Benzotiadiazinas , Receptores de AMPA , Regulação Alostérica , Benzotiadiazinas/farmacologia , Cristalografia por Raios X , Receptores de AMPA/metabolismo , Estereoisomerismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico
11.
Curr Med Chem ; 28(30): 6199-6233, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33781183

RESUMO

BACKGROUND: Despite major advances in the fight against this parasitic disease, malaria remained a major cause of concern in 2021. This infection, mainly due to Plasmodium falciparum, causes more than 200 million cases every year and hundreds of thousands deaths in the developing regions, mostly in Africa. The last statistics show an increase in the cases for the third consecutive year; from 211 million in 2015, it has reached 229 million in 2019. This trend could be partially explained by the appearance of resistance to all the used antimalarials, including artemisinin. Thus, the design of new anti- Plasmodium compounds is an urgent need. For thousands of years, nature has offered humans medicines to cure their diseases or the inspiration for the development of new active principles. It then seems logical to explore the natural sources to find new molecules to treat this parasitosis. METHODS: Therefore, this review reports and analyzes the extracts (plants, bacteria, sponges, fungi) and the corresponding isolated compounds, showing antiplasmodial properties between 2013 and 2019. RESULTS AND CONCLUSION: Nature remains a major source of active compounds. Indeed, 648 molecules from various origins, mostly plants, have been reported for their inhibitory effect on Plasmodium falciparum. Among them, 188 scaffolds were defined as highly active with IC50 ≤ 5 µM, and have been reported here in detail. Moreover, the most active compounds showed a large variety of structures, such as flavonoids, triterpenes, and alkaloids. Therefore, these compounds could be an interesting source of inspiration for medicinal chemists; several of these molecules could become the next leads for malaria treatment.


Assuntos
Antimaláricos , Malária , Plasmodium , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Química Farmacêutica , Humanos , Malária/tratamento farmacológico , Extratos Vegetais/uso terapêutico , Plasmodium falciparum
13.
Nature ; 588(7836): 151-156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33149305

RESUMO

Lymphotoxin ß-receptor (LTßR) signalling promotes lymphoid neogenesis and the development of tertiary lymphoid structures1,2, which are associated with severe chronic inflammatory diseases that span several organ systems3-6. How LTßR signalling drives chronic tissue damage particularly in the lung, the mechanism(s) that regulate this process, and whether LTßR blockade might be of therapeutic value have remained unclear. Here we demonstrate increased expression of LTßR ligands in adaptive and innate immune cells, enhanced non-canonical NF-κB signalling, and enriched LTßR target gene expression in lung epithelial cells from patients with smoking-associated chronic obstructive pulmonary disease (COPD) and from mice chronically exposed to cigarette smoke. Therapeutic inhibition of LTßR signalling in young and aged mice disrupted smoking-related inducible bronchus-associated lymphoid tissue, induced regeneration of lung tissue, and reverted airway fibrosis and systemic muscle wasting. Mechanistically, blockade of LTßR signalling dampened epithelial non-canonical activation of NF-κB, reduced TGFß signalling in airways, and induced regeneration by preventing epithelial cell death and activating WNT/ß-catenin signalling in alveolar epithelial progenitor cells. These findings suggest that inhibition of LTßR signalling represents a viable therapeutic option that combines prevention of tertiary lymphoid structures1 and inhibition of apoptosis with tissue-regenerative strategies.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/fisiologia , Receptor beta de Linfotoxina/antagonistas & inibidores , Regeneração/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Proteínas Wnt/agonistas , Imunidade Adaptativa , Envelhecimento/metabolismo , Células Epiteliais Alveolares/citologia , Células Epiteliais Alveolares/efeitos dos fármacos , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose/efeitos dos fármacos , Enfisema/metabolismo , Feminino , Humanos , Imunidade Inata , Pulmão/metabolismo , Receptor beta de Linfotoxina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumaça/efeitos adversos , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo
14.
Chem Biol Interact ; 331: 109272, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010220

RESUMO

A cellular model of cardiomyocytes (H9c2 cell line) and mitochondria isolated from mouse liver were used to understand the drug action of BPDZ490 and BPDZ711, two benzopyran analogues of the reference potassium channel opener cromakalim, on mitochondrial respiratory parameters and swelling, by comparing their effects with those of the parent compound cromakalim. For these three compounds, the oxygen consumption rate (OCR) was determined by high-resolution respirometry (HRR) and their impact on adenosine triphosphate (ATP) production and calcium-induced mitochondrial swelling was investigated. Cromakalim did not modify neither the OCR of H9c2 cells and the ATP production nor the Ca-induced swelling. By contrast, the cromakalim analogue BPDZ490 (1) induced a strong increase of OCR, while the other benzopyran analogue BPDZ711 (2) caused a marked slowdown. For both compounds, 1 displayed a biphasic behavior while 2 still showed an inhibitory effect. Both compounds 1 and 2 were also found to decrease the ATP synthesis, with pronounced effect for 2, while cromakalim remained without effect. Overall, these results indicate that cromakalim, as parent molecule, does not induce per se any direct effect on mitochondrial respiratory function neither on whole cells nor on isolated mitochondria whereas both benzopyran analogues 1 and 2 display totally opposite behavior profiles, suggesting that compound 1, by increasing the maximal respiration capacity, might behave as a mild uncoupling agent and compound 2 is taken as an inhibitor of the mitochondrial electron-transfer chain.


Assuntos
Cromakalim/análogos & derivados , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/farmacologia , Linhagem Celular , Cromakalim/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Consumo de Oxigênio/efeitos dos fármacos , Canais de Potássio/agonistas , Canais de Potássio/metabolismo , Taxa Respiratória/efeitos dos fármacos
15.
Nat Commun ; 11(1): 4752, 2020 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-32958754

RESUMO

Growth hormone (GH) is a key modulator of growth and GH over-secretion can lead to gigantism. One form is X-linked acrogigantism (X-LAG), in which infants develop GH-secreting pituitary tumors over-expressing the orphan G-protein coupled receptor, GPR101. The role of GPR101 in GH secretion remains obscure. We studied GPR101 signaling pathways and their effects in HEK293 and rat pituitary GH3 cell lines, human tumors and in transgenic mice with elevated somatotrope Gpr101 expression driven by the rat Ghrhr promoter (GhrhrGpr101). Here, we report that Gpr101 causes elevated GH/prolactin secretion in transgenic GhrhrGpr101 mice but without hyperplasia/tumorigenesis. We show that GPR101 constitutively activates not only Gs, but also Gq/11 and G12/13, which leads to GH secretion but not proliferation. These signatures of GPR101 signaling, notably PKC activation, are also present in human pituitary tumors with high GPR101 expression. These results underline a role for GPR101 in the regulation of somatotrope axis function.


Assuntos
Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gs de Proteínas de Ligação ao GTP/metabolismo , Gigantismo/metabolismo , Hormônio do Crescimento/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Acromegalia/metabolismo , Acromegalia/patologia , Animais , Composição Corporal , Linhagem Celular , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gs de Proteínas de Ligação ao GTP/genética , Gigantismo/patologia , Adenoma Hipofisário Secretor de Hormônio do Crescimento/genética , Adenoma Hipofisário Secretor de Hormônio do Crescimento/metabolismo , Adenoma Hipofisário Secretor de Hormônio do Crescimento/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutação , Hipófise/metabolismo , Proteína Quinase C/metabolismo , Ratos , Receptores Acoplados a Proteínas G/genética
16.
Eur J Med Chem ; 208: 112767, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32916314

RESUMO

Based on the recent observation that the antiplatelet agent ticagrelor and one of its metabolite exert bactericidal activity against gram-positive bacteria, a series of 1,2,3-triazolo[4,5-d]pyrimidines structurally related to ticagrelor were synthesized and examined as putative antiplatelet and antibacterial agents. The aim was to assess the possibility of dissociating the two biological properties and to find novel 1,2,3-triazolo[4,5-d]pyrimidines expressing antiplatelet activity and devoid of in vitro antibacterial activity. The new compounds synthesized were known metabolites of ticagrelor as well as structurally simplified analogues. Some of them were found to express antiplatelet activity and to lose the antibacterial activity, supporting the view that the two activities were not necessarily linked.


Assuntos
Antibacterianos/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Pirimidinas/farmacologia , Triazóis/farmacologia , Adulto , Antibacterianos/síntese química , Humanos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores da Agregação Plaquetária/síntese química , Pirimidinas/síntese química , Relação Estrutura-Atividade , Ticagrelor/química , Triazóis/síntese química , Adulto Jovem
17.
J Med Chem ; 63(11): 5723-5733, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32374603

RESUMO

The serine protease kallikrein-related peptidase 7 (KLK7) is a member of the human tissue kallikreins. Its dysregulation leads to pathophysiological inflammatory processes in the skin. Furthermore, it plays a role in several types of cancer. For the treatment of KLK7-associated diseases, coumarinic esters have been developed as small-molecule enzyme inhibitors. To characterize the inhibition mode of these inhibitors, we analyzed structures of the inhibited protease by X-ray crystallography. Electron density shows the inhibitors covalently attached to His57 of the catalytic triad. This confirms the irreversible character of the inhibition process. Upon inhibitor binding, His57 undergoes an outward rotation; thus, the catalytic triad of the protease is disrupted. Besides, the halophenyl moiety of the inhibitor was absent in the final enzyme-inhibitor complex due to the hydrolysis of the ester linkage. With these results, we analyze the structural basis of KLK7 inhibition by the covalent attachment of aromatic coumarinic esters.


Assuntos
Cumarínicos/química , Calicreínas/antagonistas & inibidores , Inibidores de Proteases/química , Sítios de Ligação , Domínio Catalítico , Cumarínicos/metabolismo , Cristalografia por Raios X , Ésteres/química , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas em Tandem
18.
Antioxidants (Basel) ; 9(2)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31978956

RESUMO

The real impact of polyphenol-rich vegetable and fruit juice intake on cardiovascular health remains a matter of controversy. In the present study, rat aorta segments immersed in an organ bath (OB) were used to explore whether the total polyphenol content and/or individual phenolic compound contents of 22 commercial vegetable (n = 3) and fruit juices [(citrus (n = 5), berries (n = 10), apple (n = 2), pineapple (n = 2)] might be associated with vascular tone. Red juices (particularly blackcurrant) and lemon juice caused the most marked vasorelaxation, its amplitude being endothelium dependent or not according to the volume ratio of juice to initial OB solution Vjuice/VOBS). At volume ratios 5% and 10%, both the juice and OB total polyphenol for all juices and total anthocyanin contents for berry juices significantly correlated with aorta vasorelaxation intensity. This was not the case for total or individual flavonols (except kaempferol) or for total or individual flavanols (except epigallocatechin gallate). If one relates our measured concentrations of individual phenolic compounds in OB to what is known about their physiological concentrations, and given our evidenced correlations between compound concentrations and vasorelaxation intensity, kaempferol, epigallocatechin gallate and peonidin-3-O-glucoside seem to emerge as the interesting phenolic compounds likely to be responsible for the potent vasorelaxation observed with fruit juices, and more particularly blackcurrant ones. Clinical investigation is required, however, to confirm our observations.

19.
JAMA Cardiol ; 4(6): 596-599, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31066863
20.
Medchemcomm ; 10(3): 431-438, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31015906

RESUMO

The present study describes the synthesis and biological evaluation of 4-phenylureido/thioureido-substituted 2,2-dimethyl-3,4-dihydro-2H-1,4-benzoxazines as isosteres of corresponding 2,2-dimethylchromans reported to be pancreatic ß-cell KATP channel openers. The benzoxazines were found to be less active as inhibitors of the glucose-induced insulin release than their corresponding chromans, while the myorelaxant activity of some 4-arylureido-substituted benzoxazines was more pronounced than that exhibited by their chroman counterparts. The myorelaxant activity of the most potent benzoxazine 8e was further characterized on rat aortic rings precontracted by 30 mM KCl in the presence of glibenclamide (10 µM) or precontracted by 80 mM extracellular KCl. Our findings indicate that, on vascular smooth muscle cells, the benzoxazine 8e mainly behaved as a calcium entry blocker.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...