Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Commun ; 6: 6150, 2015 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-25639190

RESUMO

Systems allowing label-free molecular detection are expected to have enormous impact on biochemical sciences. Research focuses on materials and technologies based on exploiting localized surface plasmon resonances in metallic nanostructures. The reason for this focused attention is their suitability for single-molecule sensing, arising from intrinsically nanoscopic sensing volume and the high sensitivity to the local environment. Here we propose an alternative route, which enables radically improved sensitivity compared with recently reported plasmon-based sensors. Such high sensitivity is achieved by exploiting the control of the phase of light in magnetoplasmonic nanoantennas. We demonstrate a manifold improvement of refractometric sensing figure-of-merit. Most remarkably, we show a raw surface sensitivity (that is, without applying fitting procedures) of two orders of magnitude higher than the current values reported for nanoplasmonic sensors. Such sensitivity corresponds to a mass of ~ 0.8 ag per nanoantenna of polyamide-6.6 (n=1.51), which is representative for a large variety of polymers, peptides and proteins.

3.
Phys Rev Lett ; 111(16): 167401, 2013 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-24182300

RESUMO

We explore the influence of the phase of localized plasmon resonances on the magneto-optical activity of nanoferromagnets. We demonstrate that these systems can be described as two orthogonal damped oscillators coupled by the spin-orbit interaction. We prove that only the spin-orbit induced transverse plasmon plays an active role on the magneto-optical properties by controlling the relative amplitude and phase lag between the two oscillators. Our theoretical predictions are fully confirmed by magneto-optical Kerr effect and optical extinction measurements in nanostructures of different size and shape.

4.
Opt Express ; 21(8): 9875-89, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23609693

RESUMO

An approach to compute the polarizability tensor of magnetic nanoparticles having general ellipsoidal shape is presented. We find a surprisingly excellent quantitative agreement between calculated and experimental magneto-optical spectra measured in the polar Kerr configuration from nickel nanodisks of large size (exceeding 100 nm) with circular and elliptical shape. In spite of its approximations and simplicity, the formalism presented here captures the essential physics of the interplay between magneto-optical activity and the plasmonic resonance of the individual particle. The results highlight the key role of the dynamic depolarization effects to account for the magneto-optical properties of plasmonic nanostructures.


Assuntos
Nanopartículas Metálicas/química , Modelos Químicos , Níquel/química , Refratometria/métodos , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Falha de Equipamento , Campos Magnéticos
5.
Nano Lett ; 11(12): 5333-8, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22029387

RESUMO

We introduce a new perspective on magnetoplasmonics in nickel nanoferromagnets by exploiting the phase tunability of the optical polarizability due to localized surface plasmons and simultaneous magneto-optical activity. We demonstrate how the concerted action of nanoplasmonics and magnetization can manipulate the sign of rotation of the reflected light's polarization (i.e., to produce Kerr rotation reversal) in ferromagnetic nanomaterials and, further, how this effect can be dynamically controlled and employed to devise conceptually new schemes for biochemosensing.

6.
Small ; 7(16): 2341-7, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-21678553

RESUMO

The fundamental optical properties of pure nickel nanostructures are studied by far-field extinction spectroscopy and optical near-field microscopy, providing direct experimental evidence of the existence of particle plasmon resonances predicted by theory. Experimental and calculated near-field maps allow for unambiguous identification of dipolar plasmon modes. By comparing calculated near-field and far-field spectra, dramatic shifts are found between the near-field and far-field plasmon resonances, which are much stronger than in gold nanoantennas. Based on a simple damped harmonic oscillator model to describe plasmonic resonances, it is possible to explain these shifts as due to plasmon damping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...