Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(1): e23196, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163242

RESUMO

Face masks can filter droplets containing viruses and bacteria minimizing the transmission and spread of respiratory pathogens but are also an indirect source of microbes transmission. A novel antibacterial and antiviral Ag-coated polypropylene surgical mask obtained through the in situ and one-step deposition of metallic silver nanoparticles, synthesized by silver mirror reaction combined with sonication or agitation methods, is proposed in this study. SEM analysis shows Ag nanoparticles fused together in a continuous and dense layer for the coating obtained by sonication, whereas individual Ag nanoparticles around 150 nm were obtained combining the silver mirror reaction with agitation. EDX, XRD and XPS confirm the presence of metallic Ag in both coatings and also oxidized Ag in samples by agitation. A higher amount of Ag nanoparticles is deposited on samples by sonication, as calculated by TGA. Further, both coatings are biocompatible and show antibacterial properties: coating by sonication caused 24 % and 40 % of bacterial reduction while coating by agitation 48 % and 96 % against S. aureus and E. coli, respectively. At 1 min of contact with SARS-CoV-2, the coating by agitation has an antiviral capacity of 75 % against 24 % of the one by sonication. At 1 h, both coatings achieve 100 % of viral inhibition. Nonetheless, larger samples could be produced only through the silver mirror reaction combined with agitation, preserving the integrity of the mask. In conclusion, the silver-coated mask produced by silver mirror reaction combined with agitation is scalable, has excellent physico-chemical characteristics as well as significant biological properties, with higher antimicrobial activities, providing additional protection and preventing the indirect transmission of pathogens.

2.
Molecules ; 28(16)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37630233

RESUMO

Electrospinning is an easy and versatile technique to obtain nanofibrous membranes with nanosized fibers, high porosity, and pore interconnectivity. Metal nanoparticles (e.g., Ag, Cu, ZnO) exhibit excellent biocide properties due to their size, shape, release of metal ions, or reactive oxygen species production, and thus are often used as antimicrobial agents. In this study, a combined electrospinning/spray technique was employed to fabricate electrospun polyurethane membranes loaded with copper nanoparticles at different surface densities (10, 20, 25, or 30 µg/cm2). This method allows particle deposition onto the surface of the membranes without the use of chemical agents. SEM images showed that polyurethane fibers own homogeneous thickness (around 650 nm), and that spray-deposited copper nanoparticles are evenly distributed. STEM-EDX demonstrated that copper nanoparticles are deposited onto the surface of the fibers and are not covered by polyurethane. Moreover, a uniaxial rupture test showed that particles are firmly anchored to the electrospun fibers. Antibacterial tests against model microorganisms Escherichia coli indicated that the prepared electrospun membranes possess good bactericidal effect. Finally, the antiviral activity against SARS-CoV-2 was about 90% after 1 h of direct contact. The obtained results suggested that the electrospun membranes possess antimicrobial activities and can be used in medical and industrial applications.


Assuntos
COVID-19 , Nanopartículas Metálicas , Humanos , Cobre , Poliuretanos , SARS-CoV-2 , Antibacterianos/farmacologia , Escherichia coli
3.
Pharmaceutics ; 15(5)2023 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-37242573

RESUMO

Marine organisms (i.e., fish, jellyfish, sponges or seaweeds) represent an abundant and eco-friendly source of collagen. Marine collagen, compared to mammalian collagen, can be easily extracted, is water-soluble, avoids transmissible diseases and owns anti-microbial activities. Recent studies have reported marine collagen as a suitable biomaterial for skin tissue regeneration. The aim of this work was to investigate, for the first time, marine collagen from basa fish skin for the development of a bioink for extrusion 3D bioprinting of a bilayered skin model. The bioinks were obtained by mixing semi-crosslinked alginate with 10 and 20 mg/mL of collagen. The bioinks were characterised by evaluating the printability in terms of homogeneity, spreading ratio, shape fidelity and rheological properties. Morphology, degradation rate, swelling properties and antibacterial activity were also evaluated. The alginate-based bioink containing 20 mg/mL of marine collagen was selected for 3D bioprinting of skin-like constructs with human fibroblasts and keratinocytes. The bioprinted constructs showed a homogeneous distribution of viable and proliferating cells at days 1, 7 and 14 of culture evaluated by qualitative (live/dead) and qualitative (XTT) assays, and histological (H&E) and gene expression analysis. In conclusion, marine collagen can be successfully used to formulate a bioink for 3D bioprinting. In particular, the obtained bioink can be printed in 3D structures and is able to support fibroblasts and keratinocytes viability and proliferation.

4.
Nanomaterials (Basel) ; 12(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36296750

RESUMO

Specific cell targeting to deliver nanoparticles can be achieved by tailored modifications of the material surface with chemical moieties. The selection of the cell targets can be optimized by covering the nanoparticle with molecules, the receptor expression of which is restricted to particular cell subsets. Chemokines perform their biological action through 7-TM Gi-protein-coupled receptors differently expressed in all tissues. We decorated the surface of biocompatible polymer nanoparticles with full-length CCL5, an inflammatory chemokine that attracts leukocytes by binding CCR5, which is highly expressed in blood-circulating monocytes. Our observations showed that CCL5 functionalization does not affect the nanoparticle biocompatibility. Notably, CCL5 NPs delivered to PBMCs are selectively internalized by CCR5+ monocytes but not by CCR5- lymphocytes. The efficacy of PBMC subpopulation targeting by chemokine-decorated nanoparticles establishes an easy-to-use functionalization for specific leukocyte delivery.

5.
Nanomedicine (Lond) ; 16(26): 2377-2387, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34632802

RESUMO

As the current COVID-19 pandemic illustrates, vaccination is the most powerful method of disease prevention and public confidence in vaccines depends on their safety and efficacy. The information gathered in the current pandemic is growing at an accelerated pace. Both the key vital protein DNA/RNA messengers and the delivery carriers are the elements of a puzzle including their interactions with the immune system to suppress SARS-CoV-2 infection. A new nano-era is beginning in the vaccine development field and an array of side applications for diagnostic and antiviral tools will likely emerge. This review focuses on the evolution of vaccine carriers up to COVID-19-aimed nanoparticles and the immune-related adverse effects imposed by these nanocarriers.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Humanos , Pandemias , SARS-CoV-2
6.
Nanomaterials (Basel) ; 10(11)2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33233846

RESUMO

Chemokine-induced chemotaxis mediates physiological and pathological immune cell trafficking, as well as several processes involving cell migration. Among them, the role of CXCL12/CXCR4 signaling in cancer and metastasis is well known, and CXCR4 has been often targeted with small molecule-antagonists or short CXCL12-derived peptides to limit the pathological processes of cell migration and invasion. To reduce CXCR4-mediated chemotaxis, we adopted a different approach. We manufactured poly(lactic acid-co-glycolic acid) (PLGA)/Pluronic F127 nanoparticles through microfluidics-assisted nanoprecipitation and functionalized them with streptavidin to docking a biotinylated CXCL12 to be exposed on the nanoparticle surface. Our results show that CXCL12-decorated nanoparticles are non-toxic and do not induce inflammatory cytokine release in THP-1 monocytes cultured in fetal bovine and human serum-supplemented media. The cell internalization of our chemokine receptor-targeting particles increases in accordance with CXCR4 expression in FBS/medium. We demonstrated that CXCL12-decorated nanoparticles do not induce cell migration on their own, but their pre-incubation with THP-1 significantly decreases CXCR4+-cell migration, thereby antagonizing the chemotactic action of CXCL12. The use of biodegradable and immune-compatible chemokine-mimetic nanoparticles to reduce cell migration opens the way to novel antagonists with potential application in cancer treatments and inflammation.

8.
Int J Mol Sci ; 20(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615111

RESUMO

Natural occurring polymers, or biopolymers, represent a huge part of our planet biomass. They are formed by long chains of monomers of the same type or a combination of different ones. Polysaccharides are biopolymers characterized by complex secondary structures performing several roles in plants, animals, and microorganisms. Because of their versatility and biodegradability, some of them are extensively used for packaging, food, pharmaceutical, and biomedical industries as sustainable and renewable materials. In the recent years, their manipulation at the nanometric scale enormously increased the range of potential applications, boosting an interdisciplinary research attempt to exploit all the potential advantages of nanostructured polysaccharides. Biomedical investigation mainly focused on nano-objects aimed at drug delivery, tissue repair, and vaccine adjuvants. The achievement of all these applications requires the deep knowledge of polysaccharide nanomaterials' interactions with the immune system, which orchestrates the biological response to any foreign substance entering the body. In the present manuscript we focused on natural polysaccharides of high commercial importance, namely, starch, cellulose, chitin, and its deacetylated form chitosan, as well as the seaweed-derived carrageenan and alginate. We reviewed the available information on their biocompatibility, highlighting the importance of their physicochemical feature at the nanoscale for the modulation of the immune system.


Assuntos
Materiais Biocompatíveis/química , Biopolímeros/química , Sistemas de Liberação de Medicamentos , Polissacarídeos/química , Adjuvantes Imunológicos/química , Alginatos/química , Carragenina/química , Celulose/química , Quitina/química , Quitosana/química , Humanos , Nanoestruturas/química , Amido/química
9.
Mutagenesis ; 27(6): 749-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22952150

RESUMO

The search for micronuclei (MN) in binucleated cells is not always the best choice to recognize microtubule-perturbing agents, as they give rise to (micronucleated) mononucleated cells, mainly via mitotic slippage. We therefore treated peripheral lymphocytes with vincristine (VCR), nocodazole (NOC) and colcemid (COL): (i) to quantify the formation of MN in mononucleated cells and the occurrence of abnormal mitoses (c-anaphases, endoreduplicated or tetraploid metaphases); (ii) to investigate the role of cytokinesis inhibition in determining or modulating the cytogenetic effects induced by the spindle poisons (we used either cytochalasin B (cyt B) or latrunculin A, a cytokinesis inhibitor that acts differently as compared with cyt B); (iii) to assess the ploidy of cells bearing MN by fluorescence in situ hybridisation (FISH) analysis; and (iv) to evaluate the levels of the mitotic arrest deficient (MAD2) protein, that blocks the cell at the metaphase-anaphase transition, by immunoblotting. We observed the induction of numerous abnormal mitoses and tetraploid interphase nuclei, as well as of MN in mononucleated cells, a high percentage of which had a diploid complement. We also found that the effects were generally not dose but chemical dependent, where NOC was proven to be more effective than COL and VCR in inducing overall MN formation and, specifically, diploid micronucleated lymphocytes. Aneugens damaged cells to a greater extent in the presence of cytokinesis inhibitors rather than in their absence. MAD2 protein was expressed in controls to an extent reflecting the amount of lymphocytes which were initially in the G2/M transition phase. The same trend was seen in aneugen-treated cells where MAD2 levels decreased with increasing spindle poison concentration. Here, we demonstrate that micronucleated mononucleated cells and aberrant mitoses can be considered useful markers of exposure to aneugens-like spindle poisons causing preferentially, but not exclusively, mitotic slippage. Assessment of MAD2 levels can be used to confirm the cell-damaging activity of the compounds.


Assuntos
Aneugênicos/toxicidade , Citocinese/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Testes para Micronúcleos/métodos , Anáfase/efeitos dos fármacos , Western Blotting , Compostos Bicíclicos Heterocíclicos com Pontes/toxicidade , Núcleo Celular/efeitos dos fármacos , Proliferação de Células , Citocalasina B/toxicidade , Demecolcina/farmacologia , Humanos , Hibridização in Situ Fluorescente , Metáfase/efeitos dos fármacos , Mitose/efeitos dos fármacos , Mutagênicos/toxicidade , Nocodazol/farmacologia , Tiazolidinas/toxicidade , Vincristina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...