Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 325(Pt A): 116442, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36244282

RESUMO

Mass development of macrophytes is an increasing problem in many aquatic systems worldwide. Dense mats of macrophytes can negatively affect activities like boating, fishing or hydropower production and one of the management measures often applied is mechanical removal. In this study, we analyzed the effect of mechanical macrophyte removal on phytoplankton, zooplankton, and macroinvertebrate (pelagic and benthic samples) assemblages. Our study covered five sites in four countries in Europe and Africa with highly variable characteristics. In all sites, dense mats of different macrophyte species (Juncus bulbosus in a river in Norway; a mix of native macrophytes in a German river, Elodea nuttallii in a lake in Germany, Ludwigia spp. In a French lake and Pontederia crassipes in a South African lake) are problematic and mechanical removal was applied. In every country, we repeated the same BACI (Before-After-Control-Impact) design, including "before", "one week after", and "six weeks after" sampling in a control and an impact section. Repeating the same experimental design at all sites allowed us to disentangle common effects across all sites from site-specific effects. For each taxonomic group, we analyzed three structural and three functional parameters, which we combined in a scoring system. Overall, the removal of macrophytes negatively affected biodiversity, in particular of zooplankton and macroinvertebrate assemblages. In contrast, plant removal had positive effects on the phytoplankton assemblages. Effects were more pronounced one week after removal than six weeks after. Consequently, we suggest a stronger consideration of the effect of plant removal on biodiversity to arrive at more sustainable management practices in the future.


Assuntos
Lagos , Rios , Animais , Biodiversidade , Ecossistema , Lagos/química , Fitoplâncton , Plantas , Zooplâncton
2.
Sci Total Environ ; 837: 155686, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35523331

RESUMO

The role of winged aquatic insects that emerge from streams and subsidize terrestrial ecosystems has been demonstrated for natural forest landscapes, but almost no information is available for intensive agricultural landscapes. This study is the first to estimate aquatic subsidies provided by flying insects that emerge from streams and land on cropland. We investigated three major groups of aquatic insects - Trichoptera, Ephemeroptera and Chironomidae (Diptera) - that emerged from 12 third-order temperate, agricultural streams. We simultaneously monitored their emergence using floating traps and their terrestrial dispersal using passive interception traps. We estimated that the annual aquatic emerging dry mass (DM) of these groups varied from 1.4-7.5 g m-2 yr-1, depending on the stream. We used a Bayesian approach to estimate parameters of the terrestrial dispersal function of each group. We combined emerging DM and the dispersal parameters to estimate how terrestrial deposition of aquatic insect DM varied with increasing distance from streams. The results highlighted that emerging DM and dispersal to land could be higher in intensive agricultural landscapes than that previously described in natural settings. We estimated that 12.5 kg ha-1 yr-1 of winged aquatic insect DM fell to the ground 0-10 m from stream edges, composed mainly of Ephemeroptera and Trichoptera. We also estimated that 2.2 kg DM ha-1 yr-1 fell 10-50 m from the stream, especially small-bodied species of Chironomidae, throughout the year, except for the coldest weeks of winter. By influencing aquatic insect communities that emerge from streams, intensive agricultural practices change the magnitude and spatial extent of aquatic subsidy deposition on land. Implications for terrestrial food webs and ecosystem services provided to agriculture are discussed.


Assuntos
Chironomidae , Ephemeroptera , Agricultura , Animais , Teorema de Bayes , Ecossistema , Cadeia Alimentar , Insetos , Rios
3.
Sci Rep ; 10(1): 16536, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-33024224

RESUMO

Traditional morphological diagnoses of taxonomic status remain widely used while an increasing number of studies show that one morphospecies might hide cryptic diversity, i.e. lineages with unexpectedly high molecular divergence. This hidden diversity can reach even tens of lineages, i.e. hyper cryptic diversity. Even well-studied model-organisms may exhibit overlooked cryptic diversity. Such is the case of the freshwater crustacean amphipod model taxon Gammarus fossarum. It is extensively used in both applied and basic types of research, including biodiversity assessments, ecotoxicology and evolutionary ecology. Based on COI barcodes of 4926 individuals from 498 sampling sites in 19 European countries, the present paper shows (1) hyper cryptic diversity, ranging from 84 to 152 Molecular Operational Taxonomic Units, (2) ancient diversification starting already 26 Mya in the Oligocene, and (3) high level of lineage syntopy. Even if hyper cryptic diversity was already documented in G. fossarum, the present study increases its extent fourfold, providing a first continental-scale insight into its geographical distribution and establishes several diversification hotspots, notably south-eastern and central Europe. The challenges of recording hyper cryptic diversity in the future are also discussed.


Assuntos
Anfípodes/classificação , Anfípodes/genética , Água Doce , Variação Genética , Hidrobiologia , Animais , Código de Barras de DNA Taxonômico , Ecotoxicologia , Europa (Continente) , Evolução Molecular , Ligação Genética , Filogenia
4.
Biodivers Data J ; 8: e50451, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32269479

RESUMO

BACKGROUND: The Biological Field Station of Paimpont (Station Biologique de Paimpont, SBP), owned by the University of Rennes and located in the Brocéliande Forest of Brittany (France), has been hosting student scientific research and field trips during the last 60 years. The study area of the SBP is a landscape mosaic of 17 ha composed of gorse moors, forests, prairies, ponds and creeks. Land use has evolved over time. Historical surveys by students and researchers focused on insects and birds. With this study, we aimed to increase the range of taxa observations, document changes in species composition and landscape and provide a basis for interdisciplinary research perspectives. We gathered historical data, implemented an all-taxon biodiversity inventory (ATBI) in different habitats of the SBP study area, measured abiotic factors in the air, water and soil and performed a photographical landscape observation during the BioBlitz held in July 2017. NEW INFORMATION: During the 24 h BioBlitz, organised by the SBP and the EcoBio lab from the University of Rennes and the French National Center of Scientific Research (CNRS), different habitats were individually sampled. Seventy-seven experts, accompanied by 120 citizens and 12 young people participating in the European Volunteer Service, observed, identified and databased 660 species covering 5 kingdoms, 8 phyla, 21 classes, 90 orders and 247 families. In total, there were 1819 occurrences including records identified to higher taxon ranks, thereby adding one more kingdom and four more phyla. Historical data collection resulted in 1176 species and 4270 occurrences databased. We also recorded 13 climatic parameters, 10 soil parameters and 18 water parameters during the BioBlitz. Current habitats were mapped and socio-ecological landscape changes were assessed with a diachronic approach using 32 historical photographs and historical maps. The coupling of historical biodiversity data with new biotic and abiotic data and a photographic comparison of landscape changes allows an integrative understanding of how the SBP changed from agriculturally-used land to a managed natural area within the last 60 years. Hence, this BioBlitz represents an important holistic sampling of biodiversity for studies on trophic webs or on trophic interactions or on very diverse, but connected, habitats. The integration of social, biotic and abiotic data opens innovative research opportunities on the evolution of socio-ecosystems and landscapes.

5.
Chemosphere ; 245: 125594, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31855766

RESUMO

This study aimed to assess how bioturbation by freshwater benthic macroinvertebrates with different biological traits alone or in combination could modify trace elements (TE) fate between sediment and water, and if water TE concentration and animal TE content impair their body stores. Three macroinvertebrate species were exposed to TE contaminated sediment for 7 days: the omnivorous Echinogammarus berilloni (Amphipoda), the sediment feeding Tubifex tubifex (Oligochaeta) and the filter feeding Pisidium sp. (Bivalvia). Treatments were one without invertebrates (control), two with amphipods or mussels alone, and the combinations amphipod-mussel, and amphipod-mussel-worms. Water TE concentration increased significantly in 2 or 3 species mesocosms, concerning mainly Rare Earth Elements, Cr, U and Pb, known to be associated to the colloidal phase. By contrast, water soluble TE were not affected by animals. For both, amphipods and mussels, TE body content increased with the number of coexisting species. For amphipods, this increase concerned both, soluble and colloid-associated TE, possibly due to intense contact and feeding from sediment and predation on tubificids. TE bioaccumulation in mussel was less important and characterized by soluble TE, with water filtration as most plausible uptake route. Protein, triglyceride and Whole Body Energy Budget increased in amphipods with the number of coexisting species (probably by feeding on mussels' feces and tubificids) whereas triglycerides declined in mussels (presumably filtration was disturbed by amphipods). This study highlights interspecific interactions as key drivers explaining both: TE bioturbation, depending on their water solubility or colloidal association, and the exposure/contamination of species through another species activity.


Assuntos
Sedimentos Geológicos/análise , Invertebrados/metabolismo , Oligoelementos/análise , Anfípodes/metabolismo , Animais , Bivalves/metabolismo , Água Doce , Invertebrados/química , Oligoquetos/metabolismo , Oligoelementos/metabolismo , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo
6.
Zootaxa ; 4482(1): 125-139, 2018 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-30313324

RESUMO

Intensive sampling performed in the area of Oum El Bouaghi (Northeastern Algeria) yielded a new species of the stygobiont amphipod Pseudoniphargus, P. djemoi, in wells located in the plain of Tamlouka. The new species belongs to a group that shares the display of a uropod 3 exopod extremely elongate and upcurved in the male, whereas its peduncle is only moderately elongate. This cluster of species appears scattered across the southern Iberian Peninsula, Northern Morocco and the Canary Islands. This discovery increases the number of described species of the stygobiont amphipod genus Pseudoniphargus in north Africa to eight. A key to the species of Pseudoniphargus living in Continental Africa and Mediterranean Islands is provided.


Assuntos
Anfípodes , África do Norte , Argélia , Animais , Água Subterrânea , Masculino , Ilhas do Mediterrâneo , Marrocos
7.
Sci Total Environ ; 622-623: 1225-1240, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29890590

RESUMO

With an overarching goal of addressing global and regional sustainability challenges, Long Term Socio-Ecological Research Platforms (LTSER) aim to conduct place-based research, to collect and synthesize both environmental and socio-economic data, and to involve a broader stakeholder pool to set the research agenda. To date there have been few studies examining the output from LTSER platforms. In this study we enquire if the socio-ecological research from 25 self-selected LTSER platforms of the International Long-Term Ecological Research (ILTER) network has produced research products which fulfil the aims and ambitions of the paradigm shift from ecological to socio-ecological research envisaged at the turn of the century. In total we assessed 4983 publically available publications, of which 1112 were deemed relevant to the socio-ecological objectives of the platform. A series of 22 questions were scored for each publication, assessing relevance of responses in terms of the disciplinary focus of research, consideration of human health and well-being, degree of stakeholder engagement, and other relevant variables. The results reflected the diverse origins of the individual platforms and revealed a wide range in foci, temporal periods and quantity of output from participating platforms, supporting the premise that there is a growing trend in socio-ecological research at long-term monitoring platforms. Our review highlights the challenges of realizing the top-down goal to harmonize international network activities and objectives and the need for bottom-up, self-definition for research platforms. This provides support for increasing the consistency of LTSER research while preserving the diversity of regional experiences.

8.
Ecol Evol ; 8(5): 2542-2553, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29531675

RESUMO

Plant litter decomposition is an essential ecosystem function that contributes to carbon and nutrient cycling in streams. Aquatic shredders, mainly macroinvertebrates, can affect this process in various ways; they consume leaf litter, breaking it down into fragments and creating suitable habitats or resources for other organisms through the production of fine particulate organic matter (FPOM). However, measures of litter-feeding traits across a wide range of aquatic macroinvertebrates are still rare. Here, we assessed the contributions of 11 species of freshwater macroinvertebrates to litter decomposition, by measuring consumption rate, FPOM production, and assimilation rate of highly decomposable (Alnus glutinosa) or poorly decomposable (Quercus robur) leaf litter types. In general, an increase in the quality of litter improved the litter consumption rate, and fungal conditioning of the leaf litter increased both the litter consumption rate and FPOM production. Macroinvertebrates specializing in leaf litter consumption also appeared to be the most sensitive to shifts in litter quality and the conditioning process. Contrary to expectations, the conditioning process did not increase the assimilation of low-quality litter. There was a strong correlation between the relative consumption rate (RCR) of the two litter types, and the relative FPOM production (RFP) was strongly correlated to the RCR. These findings suggest a consistent relationship between RCR and macroinvertebrate identity that is not affected by litter quality, and that the RFP could be inferred from the RCR. The varying responses of the macroinvertebrate feeding traits to litter quality and the conditioning process suggest that the replacement of a shredder invertebrate species by another species could have major consequences for the decomposition process and the detritus-based food web in streams. Further studies onto the importance of invertebrate identity and the effects of litter quality in a variety of freshwater ecosystems are needed to understand the whole ecosystem functioning and to predict its response to environmental changes.

9.
Sci Total Environ ; 613-614: 1353-1366, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-28973847

RESUMO

Ecological criteria are needed for a comprehensive evaluation of groundwater ecosystem health by including biological components with the physical and chemical properties that are already required by European directives. Two methodological approaches to assess the ecological status of groundwater ecosystems were combined in two alluvial plains (the Ariège and Hers Rivers, southwestern France) varying in agriculture intensity (from grassland to crop rotation including maize and sunflower, and to maize monoculture). In the first approach, the composition of invertebrate assemblages (only obligate-groundwater crustaceans, i.e. stygobionts) sampled in 28 wells differing in their land use contexts was analysed. Abundance, species richness, and assemblage composition significantly changed with agricultural land use or urbanization around the wells. In the second approach, we tested an in situ exposure of sentinel organisms to quantify their response to the environmental pressures. The epigean and native amphipod species Gammarus cf. orinos was used as the sentinel species. Amphipods (30 individuals in each of 10 wells) were exposed for one week to the in situ conditions at two seasons with contrasted concentrations of pollutants. The Ecophysiological Index (EPI) synthetizing the survival rates and energetic storage decreased in wells with low oxygen and high nitrate concentrations, but only during the highest contamination period. Atrazine-related compounds negatively impacted sentinel health whatever the season. The combination of these two approaches may have major applications for orientating groundwater ecosystem management.

10.
Zootaxa ; 4254(1): 120-126, 2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28609986

RESUMO

A new species of the euryrhynchid shrimp genus Euryrhynchina Powell, 1976, E. puteola sp. nov., is described from Cameroon. The new species can be easily distinguished from the only other species in the genus, E. edingtonae Powell, 1976, by the absence of a setiferous lobe on the eye peduncle, the absence of a meral spine on the ambulatory pereiopods, the shape of the scaphocerite tooth, a single spine on the uropodal diaeresis (vs. 2-3), the absence of a podobranch on the second maxilliped, and the absence of appendices internae on the male pleopods 2-5. Although the species was discovered in a phreatic well, it remains unclear if it is a true stygobiont.


Assuntos
Decápodes , Estruturas Animais , Animais , Camarões , Água Subterrânea , Masculino
11.
Environ Sci Technol ; 49(20): 12465-73, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26406398

RESUMO

Classical species sensitivity distribution (SSD) is used to assess the threat to ecological communities posed by a contaminant and derive a safe concentration. It suffers from several well-documented weaknesses regarding its ecological realism and statistical soundness. Criticism includes that SSD does not take time-dependence of the data into account, that safe concentrations obtained from SSD might not be entirely protective of the target communities, and that there are issues of statistical representativity and of uncertainty propagation from the experimental data. We present a hierarchical toxico-dynamic (TD) model to simultaneously address these weaknesses: TD models incorporate time-dependence and allow improvement of the ecological relevance of safe concentrations, while the hierarchical approach affords appropriate propagation of uncertainty from the original data. We develop this model on a published data set containing the salinity tolerance over 72 h of 217 macroinvertebrate taxa, obtained through rapid toxicity testing (RTT). The shrinkage properties of the hierarchical model prove particularly adequate for modeling inhomogeneous RTT data. Taking into account the large variability in the species response, the model fits the whole data set well. Moreover, the model predicts a time-independent safe concentration below that obtained with classical SSD at 72 h, demonstrating under-protectiveness of the classical approach.


Assuntos
Ecotoxicologia/métodos , Invertebrados , Modelos Teóricos , Animais , Salinidade , Especificidade da Espécie , Testes de Toxicidade , Incerteza
12.
J Comp Physiol B ; 185(3): 303-13, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25588676

RESUMO

Temperature is one of the main abiotic factors influencing the distribution and abundance of organisms. In the Rhône River Valley, populations of the crustacean Gammarus pulex are distributed along a 5 °C thermal gradient from the North to the South of the valley. In this present work, we investigated the heat shock response of G. pulex according to latitudinal distribution (northern vs. southern populations) and ontogeny (adults vs. embryos from early stages). We isolated two isoforms (one constitutive hsc70 and one inducible hsp70) of heat shock proteins 70 (HSP70) and quantitatively compared their amounts of mRNA after heat shocks, using real-time PCR. Whereas the hsc70 (constitutive) gene did not vary between the two populations, a significant effect of the population was observed on the expression of the hsp70 (inducible) gene in adult specimens. The northern population of amphipods showed a greater magnitude of induction and a 2 °C lower onset temperature when compared to the southern population, suggesting that the northern population is more affected by elevated temperature than the southern one. We demonstrated that the expression of hsp70 may play a crucial role in the persistence of biogeographical patterns of G. pulex, since it reflects the natural distribution of this species along the latitudinal thermal gradient. A differential regulation of hsc70 gene was also observed according to the ontogenetic stage, with a switch from heat inducible in early life stages to constitutively and highly expressed in adults. These findings demonstrate the importance of considering the entire life cycle to better understand the adaptive response to thermal stress.


Assuntos
Anfípodes/fisiologia , Distribuição Animal/fisiologia , Regulação da Expressão Gênica/fisiologia , Proteínas de Choque Térmico HSP70/metabolismo , Estresse Fisiológico/fisiologia , Temperatura , Fatores Etários , Anfípodes/embriologia , Anfípodes/metabolismo , Análise de Variância , Animais , Sequência de Bases , Primers do DNA/genética , DNA Complementar/genética , França , Geografia , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
13.
Springerplus ; 3: 68, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24567877

RESUMO

Future climate changes and the resulting modifications in anthropogenic activities will alter the interactions between rivers and groundwater. The quantification of these hydraulic interactions is absolutely necessary for achieving sustainable water use and requires accurate analytical methodologies. This report proposes an interdisciplinary approach to the quantitative and qualitative characterization of hydraulic interactions between rivers and shallow aquifers, wherein it outlines the advantages of coupling groundwater modeling with biological markers. As a first step, we built independent diagnostic maps of hydrological exchanges at the sector scale on the basis of hydrogeological modeling and biological indicators. In a second step, these maps were compared to provide a quantitative and qualitative understanding of exchanges between groundwater and surface water. This comparison significantly improved the calibration of groundwater models through a better assessment of boundary zones. Our approach enabled us to identify the conditions under which it could be possible to use biological indicators instead of a large set of piezometric measures. The integration of such combined tools in a future decision support system will assist governmental authorities in proposing appropriate long-term water policies for the preservation of groundwater resources, such as for supplying potable water and/or mitigating pollution risks.

14.
PLoS One ; 8(10): e77242, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204778

RESUMO

As a consequence of global warming, it is important to characterise the potential changes occurring for some functional processes through the intra-specific study of key species. Changes in species distribution, particularly when key or engineer species are affected, should contribute to global changes in ecosystem functioning. In this study, we examined the potential consequences induced by global warming on ecosystem functioning in term of organic matter recycling. We compared consumption of leaf litter by some shredder populations (Gammarus pulex) between five tree species inhabiting continental (i.e., the northern region of the Rhône River Valley) and/or Mediterranean (i.e., the southern region of the Rhône River Valley) conditions. To consider any potential adaptation of the gammarid population to vegetation in the same climate conditions, three populations of the key shredder Gammarus pulex from the northern region and three from the southern region of the Rhône River Valley were used. We experimentally compared the effects of the geographical origin of both the gammarid populations and the leaf litter species on the shredding activity and the physiological state of animals (through body triglyceride content). This study demonstrated that leaf toughness is more important than geographical origin for determining shredder leaf litter consumption. The overall consumption rate of the gammarid populations from the southern region of Rhône Valley was much higher than that of the populations from the northern region, but no clear differences between the origins of the leaf litter (i.e., continental vs. Mediterranean) were observed. The northwards shift of G. pulex populations adapted to warmer conditions might significantly modify organic matter recycling in continental streams. As gammarid populations can demonstrate local adaptations to certain leaf species as a trophic resource, changes in riparian vegetation associated with climate change might locally affect the leaf litter degradation process by this shredder.


Assuntos
Anfípodes/fisiologia , Folhas de Planta , Solo/química , Animais , Biodegradação Ambiental , Mudança Climática , Ecossistema , França , Dinâmica Populacional , Rios , Árvores/fisiologia
15.
Glob Chang Biol ; 19(3): 763-74, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23504834

RESUMO

In a global change context, the intensity and the frequency of drastic low flow periods or drought events will most likely increase to a substantial extent over the coming decades, leading to a modification in the abiotic characteristics of wetlands. This change in environmental parameters may induce severe shifts in plant and animal communities and the functioning of ecosystems. In this study, we experimentally estimated the effect of drought and the accumulation of ammonia (NH3 ) on the feeding activities of three generalist macroinvertebrates (i.e. Gammarus pulex, Gammarus roeselii and Asellus aquaticus) on three types of organic matter: leaves of Berula erecta growing in submerged conditions, leaves of the same species growing in emerged conditions and dead leaves of Alnus glutinosa. We observed a modification in the biomechanical and stoichiometric characteristics of the plants as a result of the emersion of the aquatic plants. This shift produced a substantial decrease in organic matter recycling by invertebrates and in their associated physiological ability (i.e. the energy stores of the animals) to face conditions associated with environmental change. Moreover, the accumulation of NH3 amplified the negative effect of emersion. This snowball effect on invertebrates may profoundly modify the functioning of ecosystems, particularly in terms of organic matter production/degradation and carbon mineralization.


Assuntos
Amônia/análise , Água Doce , Invertebrados/fisiologia , Áreas Alagadas , Animais , Ergosterol/metabolismo , Comportamento Alimentar , Glicogênio/metabolismo , Folhas de Planta/metabolismo
16.
Chemosphere ; 90(3): 1016-22, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22910696

RESUMO

In a context of global change, increases in temperature and in ammonia concentration should strongly affect the crustaceans of wetlands. We experimentally examined, at three different seasons (i.e. winter, spring, and summer), the effect of temperature (12, 18, and 24°C) on the lethal (survival rates) and sublethal (oxygen consumption) toxicity of unionized ammonia (NH(3)) on the amphipods Gammarus pulex and Gammarus roeselii and the isopod Asellus aquaticus. Our results demonstrate (1) a gradient of increasing tolerance and survival from G. roeselii to G. pulex and A. aquaticus, (2) an increasing toxicity of ammonia with temperature, and (3) a strong seasonal variation of the tolerance to ammonia, with a higher tolerance of individuals in winter than in summer. However, the sub-lethal effect of ammonia on the oxygen consumption rate was species dependant and changed according to temperature or season. Global change and resulting variations in crustacean densities will potentially affect the ecosystem functioning (e.g. organic matter recycling).


Assuntos
Amônia/toxicidade , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Anfípodes/fisiologia , Animais , Água Doce/análise , Aquecimento Global , Consumo de Oxigênio/efeitos dos fármacos , Estações do Ano , Temperatura , Áreas Alagadas
17.
Environ Pollut ; 173: 157-67, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23202646

RESUMO

Secondary salinisation of rivers and streams is a global and growing threat that might be amplified by climate change. It can have many different causes, like irrigation, mining activity or the use of salts as de-icing agents for roads. Freshwater organisms only tolerate certain ranges of water salinity. Therefore secondary salinisation has an impact at the individual, population, community and ecosystem levels, which ultimately leads to a reduction in aquatic biodiversity and compromises the goods and services that rivers and streams provide. Management of secondary salinization should be directed towards integrated catchment strategies (e.g. benefiting from the dilution capacity of the rivers) and identifying threshold salt concentrations to preserve the ecosystem integrity. Future research on the interaction of salinity with other stressors and the impact of salinization on trophic interactions and ecosystem properties is needed and the implications of this issue for human society need to be seriously considered.


Assuntos
Rios/química , Salinidade , Qualidade da Água/normas , Irrigação Agrícola/estatística & dados numéricos , Automóveis/estatística & dados numéricos , Mudança Climática , Ecologia , Mineração/estatística & dados numéricos , Tolerância ao Sal , Cloreto de Sódio/análise , Poluentes da Água/análise , Poluição da Água/estatística & dados numéricos
18.
PLoS One ; 7(5): e35224, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22567097

RESUMO

Salinity is a key abiotic property of inland waters; it has a major influence on biotic communities and is affected by many natural and anthropogenic processes. Salinity of inland waters tends to increase with aridity, and biota of inland waters may have evolved greater salt tolerance in more arid regions. Here we compare the sensitivity of stream macroinvertebrate species to salinity from a relatively wet region in France (Lorraine and Brittany) to that in three relatively arid regions eastern Australia (Victoria, Queensland and Tasmania), South Africa (south-east of the Eastern Cape Province) and Israel using the identical experimental method in all locations. The species whose salinity tolerance was tested, were somewhat more salt tolerant in eastern Australia and South Africa than France, with those in Israel being intermediate. However, by far the greatest source of variation in species sensitivity was between taxonomic groups (Order and Class) and not between the regions. We used a bayesian statistical model to estimate the species sensitivity distributions (SSDs) for salinity in eastern Australia and France adjusting for the assemblages of species in these regions. The assemblage in France was slightly more salinity sensitive than that in eastern Australia. We therefore suggest that regional salinity sensitivity is therefore likely to depend most on the taxonomic composition of respective macroinvertebrate assemblages. On this basis it would be possible to screen rivers globally for risk from salinisation.


Assuntos
Invertebrados , Salinidade , Animais , Austrália , Teorema de Bayes , Ecossistema , Monitoramento Ambiental , França , Israel , Queensland , Rios , África do Sul , Tasmânia , Vitória
19.
Naturwissenschaften ; 99(4): 259-64, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22349555

RESUMO

In the global warming context, we compared the thermal tolerance of several populations of the crustacean Gammarus pulex (Amphipoda: Gammaridae) along a latitudinal thermal gradient in the Rhône Valley. To disentangle the effect of regional (North vs. South) and local (site-specific) factors, the ecophysiological responses of populations were investigated at two levels of biological organisation: whole organism level considering body size [critical thermal maximum (CTmax), mean speed of locomotion (MS), time mobile (TM)] and organelle function level [mitochondrial respiratory control ratios (RCRs)]. CTmax and RCRs, but not MS and TM, revealed a significantly higher thermal tolerance in southern populations compared to northern ones. Nevertheless, temperatures ≥ 30°C were deleterious for all populations, suggesting that populations located in the warmer limit of the species distribution will be more threatened by climate change as they live closer to their upper thermal limits. The strong differences observed between populations indicate that the species-level thermal tolerance used in predictive models may not be informative enough to study the impact of global warming on species distributions. This work also reveals that an appropriate choice of indicators is essential to study the consequences of global warming since the response of organisms at the whole body level can be influenced by local conditions.


Assuntos
Anfípodes/fisiologia , Água Doce , Temperatura Alta , Animais , Aquecimento Global , Locomoção/fisiologia , Mitocôndrias/fisiologia
20.
Sci Total Environ ; 409(20): 4373-80, 2011 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-21794895

RESUMO

Changes in land use and intensification of agricultural pressure have greatly accelerated the alteration of the landscape in most developed countries. These changes may greatly disturb the adjacent ecosystems, particularly streams, where the effects of pollution are amplified. In this study, we used the leaf litter breakdown rate to assess the functional integrity of stream ecosystems and river sediments along a gradient of either traditional extensive farming or a gradient of vineyard area. In the benthic layer, the total litter breakdown process integrates the temporal variability of the anthropogenic disturbances and is strongly influenced by land use changes in the catchment even though a low concentration of toxics was measured during the study period. This study also confirmed the essential role played by amphipods in the litter breakdown process. In contrast, microbial processes may have integrated the variations in available nutrients and dissolved oxygen concentrations, but failed to respond to the disturbances induced by vineyard production (the increase in pesticides and metal concentrations) during the study period. The response of microbes may not be sensitive enough for assessing the global effect of seasonal agricultural practices. Finally, the leaf litter breakdown measured in the hyporheic zone seemed mainly driven by microbial activities and was hence more affected by vertical exchanges with surface water than by land use practices. However, the breakdown rate of leaf litter in the hyporheic zone may constitute a relevant way to evaluate the impact on river functioning of any human activities that induce massive soil erosion and sediment clogging.


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Água Doce , Sedimentos Geológicos , Folhas de Planta , Poluentes Químicos da Água/análise , Animais , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Biomassa , Ecossistema , França , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Invertebrados/crescimento & desenvolvimento , Dinâmica não Linear , Folhas de Planta/química , Folhas de Planta/microbiologia , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...