Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 7(6): 5340-5349, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35187349

RESUMO

Aiming to achieve the highest combustion efficiency and less pollutant emission, a catalytic coating for cylinder walls in internal combustion engines was developed and tested under several conditions. The coating consists of a La0.8Sr0.2CoO3 (LSCO) catalyst on an aluminum-based ceramic support. Atomic force microscopy was applied to investigate the surface roughness of the LSCO coating, while in situ diffuse infrared Fourier transform spectroscopy was used to obtain the molecular understanding of adsorption and conversion. In addition, the influence of LSCO-coated substrates on the flame quenching distance was studied in a constant-volume combustion chamber. Investigations conclude that an LSCO coating leads to a reduction of flame quenching at low wall temperatures but a negligible effect at high temperatures. Finally, the influence of LSCO coatings on the in-cylinder wall-near gas composition was investigated using a fast gas sampling methodology with sample durations below 1 ms. Ion molecule reaction mass spectrometry and Fourier transform infrared spectroscopy revealed a significant reduction of hydrocarbons and carbon monoxide when LSCO coating was applied.

2.
ChemSusChem ; 14(23): 5254-5264, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34623036

RESUMO

Model-based fuel design can tailor fuels to advanced engine concepts while minimizing environmental impact and production costs. A rationally designed ketone-ester-alcohol-alkane (KEAA) blend for high efficiency spark-ignition engines was assessed in a multi-disciplinary manner, from production cost to ignition characteristics, engine performance, ecotoxicity, microbial storage stability, and carbon footprint. The comparison included RON 95 E10, ethanol, and two previously designed fuels. KEAA showed high indicated efficiencies in a single-cylinder research engine. Ignition delay time measurements confirmed KEAA's high auto-ignition resistance. KEAA exhibits a moderate toxicity and is not prone to microbial infestation. A well-to-wheel analysis showed the potential to lower the carbon footprint by 95 percent compared to RON 95 E10. The findings motivate further investigations on KEAA and demonstrate advancements in model-based fuel design.

3.
Angew Chem Int Ed Engl ; 56(20): 5412-5452, 2017 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-28185380

RESUMO

Sustainably produced biofuels, especially when they are derived from lignocellulosic biomass, are being discussed intensively for future ground transportation. Traditionally, research activities focus on the synthesis process, while leaving their combustion properties to be evaluated by a different community. This Review adopts an integrative view of engine combustion and fuel synthesis, focusing on chemical aspects as the common denominator. It will be demonstrated that a fundamental understanding of the combustion process can be instrumental to derive design criteria for the molecular structure of fuel candidates, which can then be targets for the analysis of synthetic pathways and the development of catalytic production routes. With such an integrative approach to fuel design, it will be possible to improve systematically the entire system, spanning biomass feedstock, conversion process, fuel, engine, and pollutants with a view to improve the carbon footprint, increase efficiency, and reduce emissions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...