Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 248: 116283, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38850885

RESUMO

This study presented a new method to design a MIP-based electrochemical sensor that could improve the selective and sensitive detection of ipratropium bromide (IPR). The polymeric film was designed using 2-hydroxyethyl methacrylate (HEMA) as the basic monomer, 2-hydroxy-2-methylpropiophenone as the initiator, ethylene glycol dimethacrylate (EGDMA) as the crosslinking agent, and N-methacryloyl-L-aspartic acid (MAAsp) as the functional monomer. The presence of MAAsp results in the functional groups in imprinting binding sites, while the presence of poly(vinyl alcohol) (PVA) allows the generation of porous materials not only for sensitive sensing but also for avoiding electron transport limitations. Electrochemical characterizations of the changes at each stage of the MIP preparation process were confirmed using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). In addition, morphological characterizations of the developed sensor were performed using scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), and contact angle measurements. Theoretical calculations were also performed to explain/confirm the experimental results better. It was found that the results of the calculations using the DFT approach agreed with the experimental data. The MAAsp-IPR@MIP/GCE sensor was developed using the photopolymerization method, and the sensor surface was obtained by exposure to UV lamp radiation at 365 nm. The improved MIP-based electrochemical sensor demonstrated the ability to measure IPR for standard solutions in the linear operating range of 1.0 × 10-12-1.0 × 10-11 M under optimized conditions. For standard solutions, the limit of detection (LOD) and limit of quantification (LOQ) were obtained as 2.78 × 10-13 and 9.27 × 10-13 M, respectively. The IPR recovery values for the inhalation form were calculated as 101.70 % and 100.34 %, and the mean relative standard deviations (RSD) were less than 0.76 % in both cases. In addition, the proposed modified sensor demonstrated remarkable sensitivity and selectivity for rapid assessment of IPR in inhalation forms. The sensor's unique selectivity is demonstrated by its successful performance even in the presence of IPR impurities.

2.
Anal Bioanal Chem ; 416(9): 2277-2300, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38279011

RESUMO

Prostate and lung cancers are the most common types of cancer and affect a large part of the population around the world, causing deaths. Therefore, the rapid identification of cancer can profoundly impact reducing cancer-related death rates and protecting human lives. Significant resources have been dedicated to investigating new methods for early disease detection. Cancer biomarkers encompass various biochemical entities, including nucleic acids, proteins, sugars, small metabolites, cytogenetic and cytokinetic parameters, and whole tumor cells in bodily fluids. These tools can be utilized for various purposes, such as risk assessment, diagnosis, prognosis, treatment efficacy, toxicity evaluation, and predicting a return. Due to these versatile and critical purposes, there are widespread studies on the development of new, sensitive, and selective approaches for the determination of cancer biomarkers. This review illustrates the significant lung and prostate cancer biomarkers and their determination utilizing electrochemical sensors, which have the advantage of improved sensitivity, low cost, and simple analysis. Additionally, approaches such as improving sensitivity with nanomaterials and ensuring selectivity with MIPs are used to increase the performance of the sensor. This review aims to overview the most recent electrochemical biosensor applications for determining vital biomarkers of prostate and lung cancers in terms of nanobiosensors and molecularly imprinted polymer (MIP)-based biosensors.


Assuntos
Neoplasias Pulmonares , Impressão Molecular , Humanos , Masculino , Biomarcadores Tumorais/análise , Neoplasias Pulmonares/diagnóstico , Impressão Molecular/métodos , Próstata/química , Pulmão/química , Técnicas Eletroquímicas/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...