Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(24): e2319301121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838011

RESUMO

Alcohol dehydrogenase 1B (ADH1B) is a primate-specific enzyme which, uniquely among the ADH class 1 family, is highly expressed both in adipose tissue and liver. Its expression in adipose tissue is reduced in obesity and increased by insulin stimulation. Interference with ADH1B expression has also been reported to impair adipocyte function. To better understand the role of ADH1B in adipocytes, we used CRISPR/Cas9 to delete ADH1B in human adipose stem cells (ASC). Cells lacking ADH1B failed to differentiate into mature adipocytes manifested by minimal triglyceride accumulation and a marked reduction in expression of established adipocyte markers. As ADH1B is capable of converting retinol to retinoic acid (RA), we conducted rescue experiments. Incubation of ADH1B-deficient preadipocytes with 9-cis-RA, but not with all-transretinol, significantly rescued their ability to accumulate lipids and express markers of adipocyte differentiation. A homozygous missense variant in ADH1B (p.Arg313Cys) was found in a patient with congenital lipodystrophy of unknown cause. This variant significantly impaired the protein's dimerization, enzymatic activity, and its ability to rescue differentiation in ADH1B-deficient ASC. The allele frequency of this variant in the Middle Eastern population suggests that it is unlikely to be a fully penetrant cause of severe lipodystrophy. In conclusion, ADH1B appears to play an unexpected, crucial and cell-autonomous role in human adipocyte differentiation by serving as a necessary source of endogenous retinoic acid.


Assuntos
Adipócitos , Adipogenia , Álcool Desidrogenase , Humanos , Álcool Desidrogenase/metabolismo , Álcool Desidrogenase/genética , Adipogenia/genética , Adipócitos/metabolismo , Adipócitos/citologia , Tretinoína/metabolismo , Diferenciação Celular , Sistemas CRISPR-Cas , Mutação de Sentido Incorreto , Tecido Adiposo/metabolismo
2.
J Transl Med ; 22(1): 480, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773651

RESUMO

Inflammation plays a critical role in conditions such as acute liver failure, acute-on-chronic liver failure, and ischemia-reperfusion-induced liver injury. Various pathogenic pathways contribute to liver inflammation, involving inflammatory polarization of macrophages and Küpffer cells, neutrophil infiltration, dysregulation of T cell subsets, oxidative stress, and activation of hepatic stellate cells. While mesenchymal stromal cells (MSCs) have demonstrated beneficial properties, their clinical translation is limited by their cellular nature. However, MSC-derived extracellular vesicles (MSC-EVs) have emerged as a promising cell-free therapeutic approach for immunomodulation. MSC-EVs naturally mirror their parental cell properties, overcoming the limitations associated with the use of MSCs. In vitro and in vivo preclinical studies have demonstrated that MSC-EVs replicate the beneficial effects of MSCs in liver injury. This includes the reduction of cell death and oxidative stress, improvement of hepatocyte function, induction of immunomodulatory effects, and mitigation of cytokine storm. Nevertheless, MSC-EVs face challenges regarding the necessity of defining consistent isolation methods, optimizing MSCs culture conditions, and establishing quality control measures for EV characterization and functional assessment. By establishing standardized protocols, guidelines, and affordable cost mass production, clinicians and researchers will have a solid foundation to conduct further studies, validate the therapeutic efficacy of MSC-EVs, and ultimately pave the way for their clinical implementation in acute liver injury.


Assuntos
Vesículas Extracelulares , Imunomodulação , Células-Tronco Mesenquimais , Pesquisa Translacional Biomédica , Vesículas Extracelulares/metabolismo , Humanos , Animais , Doença Aguda , Inflamação/patologia , Hepatite/imunologia , Hepatite/terapia
3.
Int J Mol Sci ; 24(16)2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37629131

RESUMO

Surfaces in highly anthropized environments are frequently contaminated by both harmless and pathogenic bacteria. Accidental contact between these contaminated surfaces and people could contribute to uncontrolled or even dangerous microbial diffusion. Among all possible solutions useful to achieve effective disinfection, ultraviolet irradiations (UV) emerge as one of the most "Green" technologies since they can inactivate microorganisms via the formation of DNA/RNA dimers, avoiding the environmental pollution associated with the use of chemical sanitizers. To date, mainly UV-C irradiation has been used for decontamination purposes, but in this study, we investigated the cytotoxic potential on contaminated surfaces of combined UV radiations spanning the UV-A, UV-B, and UV-C spectrums, obtained with an innovative UV lamp never conceived so far by analyzing its effect on a large panel of collection and environmental strains, further examining any possible adverse effects on eukaryotic cells. We found that this novel device shows a significant efficacy on different planktonic and sessile bacteria, and, in addition, it is compatible with eukaryotic skin cells for short exposure times. The collected data strongly suggest this new lamp as a useful device for fast and routine decontamination of different environments to ensure appropriate sterilization procedures.


Assuntos
Descontaminação , Terapia Ultravioleta , Humanos , Projetos Piloto , Raios Ultravioleta , Bactérias
5.
Int J Mol Sci ; 23(15)2022 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-35955913

RESUMO

Human angiogenin (ANG) is a 14-kDa ribonuclease involved in different pathophysiological processes including tumorigenesis, neuroprotection, inflammation, innate immunity, reproduction, the regeneration of damaged tissues and stress cell response, depending on its intracellular localization. Under physiological conditions, ANG moves to the cell nucleus where it enhances rRNA transcription; conversely, recent reports indicate that under stress conditions, ANG accumulates in the cytoplasmic compartment and modulates the production of tiRNAs, a novel class of small RNAs that contribute to the translational inhibition and recruitment of stress granules (SGs). To date, there is still limited and controversial experimental evidence relating to a hypothetical role of ANG in the epidermis, the outermost layer of human skin, which is continually exposed to external stressors. The present study collects compelling evidence that endogenous ANG is able to modify its subcellular localization on HaCaT cells, depending on different cellular stresses. Furthermore, the use of recombinant ANG allowed to determine as this special enzyme is effectively able to counter at various levels the alterations of cellular homeostasis in HaCaT cells, actually opening a new vision on the possible functions that this special enzyme can support also in the stress response of human skin.


Assuntos
RNA de Transferência , Ribonucleases , Humanos , Queratinócitos/metabolismo , Estresse Oxidativo , RNA de Transferência/genética , Ribonuclease Pancreático/metabolismo
7.
J Hepatol ; 75(5): 1192-1202, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34242696

RESUMO

Proteases are the most abundant enzyme gene family in vertebrates and they execute essential functions in all living organisms. Their main role is to hydrolase the peptide bond within proteins, a process also called proteolysis. Contrary to the conventional paradigm, proteases are not only random catalytic devices, but can perform highly selective and targeted cleavage of specific substrates, finely modulating multiple essential cellular processes. Lysosomal protease cathepsins comprise 3 families of proteases that preferentially act within acidic cellular compartments, but they can also be found in other cellular locations. They can operate alone or as part of signalling cascades and regulatory circuits, playing important roles in apoptosis, extracellular matrix remodelling, hepatic stellate cell activation, autophagy and metastasis, contributing to the initiation, development and progression of liver disease. In this review, we comprehensively summarise current knowledge on the role of lysosomal cathepsins in liver disease, with a particular emphasis on liver fibrosis, non-alcoholic fatty liver disease and hepatocellular carcinoma.


Assuntos
Catepsinas/farmacologia , Hepatopatias/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Catepsinas/metabolismo , Humanos , Hepatopatias/fisiopatologia , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/fisiopatologia , Transdução de Sinais/efeitos dos fármacos
8.
Biomolecules ; 10(3)2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32111039

RESUMO

Mucopolysaccharidosis IIIB (MPS IIIB) is an inherited metabolic disease due to deficiency of α-N-Acetylglucosaminidase (NAGLU) enzyme with subsequent storage of undegraded heparan sulfate (HS). The main clinical manifestations of the disease are profound intellectual disability and neurodegeneration. A label-free quantitative proteomic approach was applied to compare the proteome profile of brains from MPS IIIB and control mice to identify altered neuropathological pathways of MPS IIIB. Proteins were identified through a bottom up analysis and 130 were significantly under-represented and 74 over-represented in MPS IIIB mouse brains compared to wild type (WT). Multiple bioinformatic analyses allowed to identify three major clusters of the differentially abundant proteins: proteins involved in cytoskeletal regulation, synaptic vesicle trafficking, and energy metabolism. The proteome profile of NAGLU-/- mouse brain could pave the way for further studies aimed at identifying novel therapeutic targets for the MPS IIIB. Data are available via ProteomeXchange with the identifier PXD017363.


Assuntos
Encéfalo/patologia , Mucopolissacaridose III/patologia , Proteínas/análise , Acetilglucosaminidase/genética , Animais , Química Encefálica , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mucopolissacaridose III/genética , Proteômica
9.
Hum Mol Genet ; 29(2): 274-285, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31816052

RESUMO

Bone differentiation defects have been recently tied to Wnt signaling alterations occurring in vitro and in vivo Gaucher disease (GD) models. In this work, we provide evidence that the Wnt signaling multi-domain intracellular transducers Dishevelled 1 and 2 (DVL1 and DVL2) may be potential upstream targets of impaired beta glucosidase (GBA1) activity by showing their misexpression in different type 1 GD in vitro models. We also show that in Gba mutant fish a miR-221 upregulation is associated with reduced dvl2 expression levels and that in type I Gaucher patients single-nucleotide variants in the DVL2 3' untranslated region are related to variable canonical Wnt pathway activity. Thus, we strengthen the recently outlined relation between bone differentiation defects and Wnt/ß-catenin dysregulation in type I GD and further propose novel mechanistic insights of the Wnt pathway impairment caused by glucocerebrosidase loss of function.


Assuntos
Proteínas Desgrenhadas/metabolismo , Doença de Gaucher/metabolismo , Glucosilceramidase/metabolismo , Via de Sinalização Wnt/genética , Peixe-Zebra/metabolismo , Regiões 3' não Traduzidas , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Linhagem Celular , Modelos Animais de Doenças , Proteínas Desgrenhadas/genética , Doença de Gaucher/enzimologia , Doença de Gaucher/genética , Glucosilceramidase/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Osteoblastos/enzimologia , Osteoblastos/metabolismo , Osteoblastos/patologia , Transcrição Gênica , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
10.
Mol Ther Methods Clin Dev ; 10: 8-16, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-29942826

RESUMO

Mucopolysaccharidoses (MPSs) are inherited metabolic diseases caused by the deficiency of lysosomal enzymes needed to catabolize glycosaminoglycans (GAGs). Four therapeutic options are currently considered: enzyme replacement therapy, substrate reduction therapy, gene therapy, and hematopoietic stem cell transplantation. However, while some of them exhibit limited clinical efficacy and require high costs, others are still in development. Therefore, alternative treatments for MPSs need to be explored. Here we describe an innovative therapeutic approach based on the use of a recombinant protein that is able to bind the excess of extracellular accumulated heparan sulfate (HS). We demonstrate that this protein is able to reduce lysosomal defects in primary fibroblasts from MPS I and MPS IIIB patients. We also show that, by masking the excess of extracellular accumulated HS in MPS fibroblasts, fibroblast growth factor (FGF) signal transduction can be positively modulated. We, therefore, suggest the use of a competitive binding molecule for HS in MPSs as an alternative strategy to prevent the detrimental extracellular substrate storage.

11.
Sci Rep ; 8(1): 8888, 2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29892005

RESUMO

Cationic antimicrobial peptides (CAMPs) are a promising alternative to treat multidrug-resistant bacteria, which have developed resistance to all the commonly used antimicrobial, and therefore represent a serious threat to human health. One of the major drawbacks of CAMPs is their sensitivity to proteases, which drastically limits their half-life. Here we describe the design and synthesis of three nine-residue CAMPs, which showed high stability in serum and broad spectrum antimicrobial activity. As for all peptides a very low selectivity between bacterial and eukaryotic cells was observed, we performed a detailed biophysical characterization of the interaction of one of these peptides with liposomes mimicking bacterial and eukaryotic membranes. Our results show a surface binding on the DPPC/DPPG vesicles, coupled with lipid domain formation, and, above a threshold concentration, a deep insertion into the bilayer hydrophobic core. On the contrary, mainly surface binding of the peptide on the DPPC bilayer was observed. These observed differences in the peptide interaction with the two model membranes suggest a divergence in the mechanisms responsible for the antimicrobial activity and for the observed high toxicity toward mammalian cell lines. These results could represent an important contribution to unravel some open and unresolved issues in the development of synthetic CAMPs.


Assuntos
Aminoácidos/metabolismo , Anti-Infecciosos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/química , Fenômenos Biofísicos , Membrana Celular/metabolismo , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Lipossomos/metabolismo , Testes de Sensibilidade Microbiana , Ligação Proteica , Estabilidade Proteica , Soro/química
12.
J Pept Sci ; 24(7): e3095, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29900637

RESUMO

Bioactive peptides derived from the receptor-binding region of human apolipoprotein E have previously been reported. All these peptides, encompassing fragments of this region or designed on the basis of short repeated cationic sequences identified in the same region, show toxic activities against a broad spectrum of bacteria and interesting immunomodulatory effects. However, the ability of these molecules to exert antibiofilm properties has not been described so far. In the present work, we report the characterization of a novel peptide, corresponding to residues 133 to 167 of human apolipoprotein E, here named ApoE (133-167). This peptide, besides presenting interesting properties comparable with those reported for other ApoE-derived peptides, such as a direct killing activity against a broad spectrum of bacteria or the ability to downregulate lipopolysaccharide-induced cytokine release, is also endowed with significant antibiofilm properties. Indeed, the peptide is able to strongly affect the formation of the extracellular matrix and also the viability of encapsulated bacteria. Noteworthy, ApoE (133-167) is not toxic toward human and murine cell lines and is able to assume ordered conformations in the presence of membrane mimicking agents. Taken together, collected evidences about biological and structural properties of ApoE (133-167) open new perspectives in the design of therapeutic agents based on human-derived bioactive peptides.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Apolipoproteínas E/química , Bactérias/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Animais , Apolipoproteínas E/farmacologia , Bactérias/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Células Cultivadas , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Humanos , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Camundongos , Testes de Sensibilidade Microbiana , Células RAW 264.7 , Relação Estrutura-Atividade
13.
J Agric Food Chem ; 65(31): 6519-6528, 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28488442

RESUMO

The occasional greening of sweet potatoes and other plant tissues observed during cooking or other food processing has been shown to arise from the autoxidative coupling of chlorogenic acid (CGA, 5-caffeoylquinic acid) with amino acid components, leading to trihydroxybenzacridine pigments. To explore the potential of this reaction for food coloring, we report herein the optimized biomimetic preparation of trihydroxybenzacridine pigments from CGA and amino acids such as glycine and lysine, their straightforward purification by gel filtration chromatography, the UHPLC-MS/MS analysis of the purified pigment fraction, and a detailed characterization of the pH-dependent trihydroxybenzacridine chromophore. Similar green pigments were also obtained by analogous reaction of CGA with a low-cost protein, bovine serum albumin, and by simply adding CGA to chicken egg white (CEW) under stirring. Neither the purified pigments from amino acids nor the pigmented CEW exerted significant toxicity against two human cell lines, Caco-2 and HepG2, at doses compatible with common use in food coloring. Additions of the pure pigments or pigmented CEW to different food matrices imparted intense green hues, and the thermal stability of these preparations proved satisfactory up to 90 °C. The potential application of the greening reaction for the sensing of fish deterioration is also disclosed.


Assuntos
Acridinas/química , Aminoácidos/química , Produtos Biológicos/química , Ácido Clorogênico/química , Proteínas do Ovo/química , Corantes de Alimentos/química , Soroalbumina Bovina/química , Cor , Temperatura Alta , Oxirredução , Espectrometria de Massas em Tandem
14.
Biomimetics (Basel) ; 2(3)2017 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31105178

RESUMO

Conjugation of naturally occurring catecholic compounds with thiols is a versatile and facile entry to a broad range of bioinspired multifunctional compounds for diverse applications in biomedicine and materials science. We report herein the inhibition properties of the caffeic acid- dihydrolipoic acid S-conjugate, 2-S-lipoylcaffeic acid (LC), on mushroom tyrosinase. Half maximum inhibitory concentration (IC50) values of 3.22 ± 0.02 and 2.0 ± 0.1 µM were determined for the catecholase and cresolase activity of the enzyme, respectively, indicating a greater efficiency of LC compared to the parent caffeic acid and the standard inhibitor kojic acid. Analysis of the Lineweaver⁻Burk plot suggested a mixed-type inhibition mechanism. LC proved to be non-toxic on human keratinocytes (HaCaT) at concentrations up to 30 µM. These results would point to LC as a novel prototype of melanogenesis regulators for the treatment of pigmentary disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...