Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Neuroinformatics ; 19(4): 737-750, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34374965

RESUMO

Synaptic dysfunction is a hallmark of various neurodegenerative and neurodevelopmental disorders. To interrogate synapse function in a systematic manner, we have established an automated high-throughput imaging pipeline based on fluorescence microscopy acquisition and image analysis of electrically stimulated synaptic transmission in neuronal cultures. Identification and measurement of synaptic signal fluctuations is achieved by means of an image analysis algorithm based on singular value decomposition. By exploiting the synchronicity of the evoked responses, the algorithm allows disentangling distinct temporally correlated patterns of firing synapse populations or cell types that are present in the same recording. We demonstrate the performance of the analysis with a pilot compound screen and show that the multiparametric readout allows classifying treatments by their spatiotemporal fingerprint. The image analysis and visualization software has been made publicly available on Github ( https://www.github.com/S3Toolbox ). The streamlined automation of multi-well image acquisition, electrical stimulation, analysis, and meta-data warehousing facilitates large-scale synapse-oriented screens and, in doing so, it will accelerate the drug discovery process.


Assuntos
Neurônios , Sinapses , Algoritmos , Processamento de Imagem Assistida por Computador , Software
3.
Learn Mem ; 22(5): 239-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25878136

RESUMO

The mechanistic Target of Rapamycin Complex 1 (mTORC1), a key regulator of protein synthesis and cellular growth, is also required for long-term memory formation. Stimulation of mTORC1 signaling is known to be dependent on the availability of energy and growth factors, as well as the presence of amino acids. In vitro studies using serum- and amino acid-starved cells have reported that glutamine addition can either stimulate or repress mTORC1 activity, depending on the particular experimental system that was used. However, these experiments do not directly address the effect of glutamine on mTORC1 activity under physiological conditions in nondeprived cells in vivo. We present experimental results indicating that intrahippocampal administration of glutamine to rats reduces mTORC1 activity. Moreover, post-training administration of glutamine impairs long-term spatial memory formation, while coadministration of glutamine with leucine had no influence on memory. Intracellular recordings in hippocampal slices showed that glutamine did not alter either excitatory or inhibitory synaptic activity, suggesting that the observed memory impairments may not result from conversion of glutamine to either glutamate or GABA. Taken together, these findings indicate that glutamine can decrease mTORC1 activity in the brain and may have implications for treatments of neurological diseases associated with high mTORC1 signaling.


Assuntos
Glutamina/farmacologia , Hipocampo/efeitos dos fármacos , Memória de Longo Prazo/efeitos dos fármacos , Complexos Multiproteicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Hipocampo/metabolismo , Leucina/farmacologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Ratos , Ratos Long-Evans , Memória Espacial/efeitos dos fármacos
4.
J Neurosci ; 33(5): 2048-59, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23365242

RESUMO

Cholinergic neurons in the basal forebrain and the brainstem form extensive projections to a number of thalamic nuclei. Activation of cholinergic afferents during distinct behavioral states can regulate neuronal firing, transmitter release at glutamatergic and GABAergic synapses, and synchrony in thalamic networks, thereby controlling the flow of sensory information. These effects are thought to be mediated by slow and persistent increases in extracellular ACh levels, resulting in the modulation of populations of thalamic neurons over large temporal and spatial scales. However, the synaptic mechanisms underlying cholinergic signaling in the thalamus are not well understood. Here, we demonstrate highly reliable cholinergic transmission in the mouse thalamic reticular nucleus (TRN), a brain structure essential for sensory processing, arousal, and attention. We find that ACh release evoked by low-frequency stimulation leads to biphasic excitatory-inhibitory (E-I) postsynaptic responses, mediated by the activation of postsynaptic α4ß2 nicotinic ACh receptors (nAChRs) and M2 muscarinic ACh receptors (mAChRs), respectively. In addition, ACh can bind to mAChRs expressed near cholinergic release sites, resulting in autoinhibition of release. We show that the activation of postsynaptic nAChRs by transmitter release from only a small number of individual axons is sufficient to trigger action potentials in TRN neurons. Furthermore, short trains of cholinergic synaptic inputs can powerfully entrain ongoing TRN neuronal activity. Our study demonstrates fast and precise synaptic E-I signaling mediated by ACh, suggesting novel computational mechanisms for the cholinergic control of neuronal activity in thalamic circuits.


Assuntos
Acetilcolina/metabolismo , Potenciais de Ação/fisiologia , Núcleos Intralaminares do Tálamo/fisiologia , Neurônios/fisiologia , Transmissão Sináptica/fisiologia , Potenciais de Ação/efeitos dos fármacos , Animais , Inibidores da Colinesterase/farmacologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Núcleos Intralaminares do Tálamo/efeitos dos fármacos , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Fisostigmina/farmacologia , Receptores Colinérgicos/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/fisiologia , Transmissão Sináptica/efeitos dos fármacos
5.
Learn Mem ; 19(12): 615-26, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23166293

RESUMO

Na⁺-dependent high-affinity glutamate transporters have important roles in the maintenance of basal levels of glutamate and clearance of glutamate during synaptic transmission. Interestingly, several studies have shown that basal glutamate transport displays plasticity. Glutamate uptake increases in hippocampal slices during early long-term potentiation (E-LTP) and late long-term potentiation (L-LTP). Four issues were addressed in this research: Which glutamate transporter is responsible for the increase in glutamate uptake during L-LTP? In what cell type in the hippocampus does the increase in glutamate uptake occur? Does a single type of cell contain all the mechanisms to respond to an induction stimulus with a change in glutamate uptake? What role does the increase in glutamate uptake play during L-LTP? We have confirmed that GLT-1 is responsible for the increase in glutamate uptake during L-LTP. Also, we found that astrocytes were responsible for much, if not all, of the increase in glutamate uptake in hippocampal slices during L-LTP. Additionally, we found that cultured astrocytes alone were able to respond to an induction stimulus with an increase in glutamate uptake. Inhibition of basal glutamate uptake did not affect the induction of L-LTP, but inhibition of the increase in glutamate uptake did inhibit both the expression of L-LTP and induction of additional LTP. It seems likely that heightened glutamate transport plays an ongoing role in the ability of hippocampal circuitry to code and store information.


Assuntos
Astrócitos/fisiologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Hipocampo/citologia , Potenciação de Longa Duração/fisiologia , Neurônios/fisiologia , Alanina Transaminase/farmacologia , Análise de Variância , Animais , Animais Recém-Nascidos , Ácido Aspártico/farmacologia , Astrócitos/efeitos dos fármacos , Biofísica , Biotinilação , Células Cultivadas , Colforsina/farmacologia , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Transportador 1 de Aminoácido Excitatório/metabolismo , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Citometria de Fluxo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamatos/farmacologia , Ácido Glutâmico/metabolismo , Glicina/análogos & derivados , Glicina/farmacologia , Técnicas In Vitro , Indóis/farmacologia , Ácido Caínico/análogos & derivados , Ácido Caínico/farmacologia , Potenciação de Longa Duração/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Quinoxalinas/farmacologia , Ratos , Ratos Sprague-Dawley , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Valina/análogos & derivados , Valina/farmacologia
6.
J Neurochem ; 117(5): 833-40, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21426345

RESUMO

The sodium-dependent glutamate transporter, glutamate transporter subtype 1 (GLT-1) is one of the main glutamate transporters in the brain. GLT-1 contains a COOH-terminal sequence similar to one in an isoform of Slo1 K(+) channel protein previously shown to bind MAGI-1 (membrane-associated guanylate kinase with inverted orientation protein-1). MAGI-1 is a scaffold protein which allows the formation of complexes between certain transmembrane proteins, actin-binding proteins, and other regulatory proteins. The glutathione S-transferase pull-down assay demonstrated that MAGI-1 was a binding partner of GLT-1. The interaction between MAGI-1 and GLT-1 was confirmed by co-immunoprecipitation. Immunofluorescence of MAGI-1 and GLT-1 demonstrated that the distribution of MAGI-1 and GLT-1 overlapped in astrocytes. Co-expression of MAGI-1 with GLT-1 in C6 Glioma cells resulted in a significant reduction in the surface expression of GLT-1, as assessed by cell-surface biotinylation. On the other hand, partial knockdown of endogenous MAGI-1 expression by small interfering RNA in differentiated cultured astrocytes increased glutamate uptake and the surface expression of endogenous GLT-1. Knockdown of MAGI-1 increased dihydrokainate-sensitive, Na(+) -dependent glutamate uptake, indicating that MAGI-1 regulates GLT-1 mediated glutamate uptake. These data suggest that MAGI-1 regulates surface expression of GLT-1 and the level of glutamate in the hippocampus.


Assuntos
Transportador 1 de Aminoácido Excitatório/biossíntese , Guanilato Quinases/biossíntese , Proteínas de Membrana/biossíntese , Animais , Astrócitos/metabolismo , Biotinilação , Linhagem Celular Tumoral , Células Cultivadas , Transportador 1 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/biossíntese , Transportador 3 de Aminoácido Excitatório/genética , Imunofluorescência , Regulação da Expressão Gênica , Glioma/metabolismo , Ácido Glutâmico/metabolismo , Glutationa Transferase/metabolismo , Guanilato Quinases/genética , Hipocampo/citologia , Hipocampo/metabolismo , Imunoprecipitação , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/biossíntese , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Proteínas de Membrana/genética , Plasmídeos/genética , RNA Interferente Pequeno/farmacologia , Ratos , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/química , Transfecção
7.
J Neurochem ; 100(5): 1315-28, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17316403

RESUMO

Regulation of glutamate transporters often accompanies glutamatergic synaptic plasticity. We investigated the mechanisms responsible for the increase in glutamate uptake associated with increased glutamate release at the Aplysia sensorimotor synapse during long-term sensitization (LTS) and long-term facilitation. An increase in the V(max) of transport, produced by LTS training, suggested that the increased glutamate uptake was due to an increase in the number of transporters in the membrane. We cloned a high-affinity, Na(+)-dependent glutamate transporter, ApGT1, from Aplysia central nervous system that is highly enriched in pleural sensory neurons, and in pleural-pedal synaptosome and cell/glial fractions. ApGT1, expressed in Xenopus oocytes, demonstrated a similar pharmacological profile to glutamate uptake in Aplysia synaptosome and cell/glial fractions (strong inhibition by threo-beta-benzyloxyaspartate and weak inhibition by dihydrokainate) suggesting that ApGT1 may be the primary glutamate transporter in pleural-pedal ganglia. Levels of ApGT1 and glutamate uptake were increased in synaptosomes 24 h after induction of LTS by electrical stimulation or serotonin. Regulation of ApGT1 during LTS appears to occur post-transcriptionally and results in an increased number of transporters in synaptic membranes. These results suggest that an increase in levels of ApGT1 is responsible, at least in part, for the long-term increase in glutamate uptake associated with long-term memory.


Assuntos
Sistema X-AG de Transporte de Aminoácidos/biossíntese , Aplysia/fisiologia , Sequência de Aminoácidos , Sistema X-AG de Transporte de Aminoácidos/genética , Animais , Aplysia/metabolismo , Clonagem Molecular , Estimulação Elétrica , Feminino , Ácido Glutâmico/metabolismo , Potenciação de Longa Duração , Memória/fisiologia , Dados de Sequência Molecular , Neuroglia/metabolismo , Neurônios/metabolismo , Oócitos/metabolismo , Especificidade de Órgãos , RNA Mensageiro/biossíntese , Serotonina/farmacologia , Membranas Sinápticas/metabolismo , Sinaptossomos/metabolismo , Xenopus laevis
8.
J Neurosci ; 26(41): 10461-71, 2006 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-17035530

RESUMO

Regulation of glutamate reuptake occurs along with several forms of synaptic plasticity. These associations led to the hypothesis that regulation of glutamate uptake is a general component of plasticity at glutamatergic synapses. We tested this hypothesis by determining whether glutamate uptake is regulated during both the early phases (E-LTP) and late phases (L-LTP) of long-term potentiation (LTP). We found that glutamate uptake was rapidly increased within minutes after induction of LTP and that the increase in glutamate uptake persisted for at least 3 h in CA1 of the hippocampus. NMDA receptor activation and Na+-dependent high-affinity glutamate transporters were responsible for the regulation of glutamate uptake during all phases of LTP. However, different mechanisms appear to be responsible for the increase in glutamate uptake during E-LTP and L-LTP. The increase in glutamate uptake observed during E-LTP did not require new protein synthesis, was mediated by PKC but not cAMP, and as previously shown was attributable to EAAC1 (excitatory amino acid carrier-1), a neuronal glutamate transporter. On the other hand, the increase in glutamate uptake during L-LTP required new protein synthesis and was mediated by the cAMP-PKA (protein kinase A) pathway, and it involved a different glutamate transporter, GLT1a (glutamate transporter subtype 1a). The switch in mechanisms regulating glutamate uptake between E-LTP and L-LTP paralleled the differences in the mechanisms responsible for the induction of E-LTP and L-LTP. Moreover, the differences in signaling pathways and transporters involved in regulating glutamate uptake during E-LTP and L-LTP indicate that different functions and/or sites may exist for the changes in glutamate uptake during E-LTP and L-LTP.


Assuntos
Ácido Glutâmico/metabolismo , Potenciação de Longa Duração/fisiologia , Plasticidade Neuronal/fisiologia , Animais , Hipocampo/metabolismo , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA