Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Sci Total Environ ; 925: 171625, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38467258

RESUMO

Catalytic ozonation using faujasite-type Y zeolite with two different SiO2/Al2O3 molar ratios (60 and 12) was evaluated for the first time in the removal of 25 pharmaceutical compounds (PhCs) present in real effluents from two municipal wastewater treatment plants both located in the Mediterranean coast of Spain. Additionally, control experiments including adsorption and direct ozonation, were conducted to better understand the fundamental aspects of the different individual systems in wastewater samples. Commercial zeolites were used in sodium form (NaY). The results showed that the simultaneous use of ozone and NaY zeolites significantly improved the micropollutants degradation rate, able to degrade 95 % of the total mixture of PhCs within the early 9 min using the zeolite NaY-12 (24.4 mg O3 L-1 consumed), while 12 min of reaction with the zeolite NaY-60 (31 mg O3 L-1 consumed). In the case of individual experiments, ozonation removed 95 % of the total mixture of PhCs after 25 min (46.2 mg O3 L-1 consumed), while the direct adsorption, after 60 min of contact time, eliminated 30 % and 44 % using the NaY-12 and NaY-60 zeolites, respectively. Results showed that the Brønsted acid sites seemed to play an important role in the effectiveness of the treatment with ozone. Finally, the environmental assessment showed that the total risk quotients of pharmaceuticals were reduced between 87 %-99 % after ozonation in the presence of NaY-60 and NaY-12 zeolites. The results of this study demonstrate that catalytic ozonation using NaY zeolites as catalysts is a promising alternative for micropollutant elimination in real-world wastewater matrices.


Assuntos
Ozônio , Poluentes Químicos da Água , Purificação da Água , Zeolitas , Águas Residuárias , Dióxido de Silício , Poluentes Químicos da Água/análise , Purificação da Água/métodos
2.
Sci Total Environ ; 926: 171996, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38547975

RESUMO

Understanding the development and spread of antimicrobial resistance (AMR) is important for combating this global threat for public health. Wastewater-based epidemiology (WBE) is a complementary approach to current surveillance programs that minimizes some of the existing limitations. The aim of the present study is to explore WBE for monitoring antibiotics and antibiotic resistance genes (ARGs) in wastewater samples collected during 2021/2022 from the city of Castellon (Spain). Eighteen commonly prescribed antibiotics have been selected and measured by liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), with triple quadrupole mass analysers. Moreover, qPCR for specific ARGs has been performed to obtain information of these genes in co-presence with antibiotics. All selected ARGs, along with a total of 11 antibiotics, were identified. The highest population-normalized daily loads were observed for the macrolide azithromycin, followed by the quinolones ciprofloxacin and levofloxacin. Subsequently, daily consumption estimates based on wastewater data were compared with prescription data of antibiotics. Statistical analyses were conducted to explore if there is correlation between antibiotics and ARGs. While no correlations were found between antibiotics and their corresponding ARGs, certain correlations (p < 0.05) were identified among non-corresponding ARGs. In addition, a strong positive correlation was found between the sum of all antibiotics and the intl1 gene. Moreover, population-normalized ARG loads significantly correlate with the 16S rRNA-normalized ARG loads, serving as an indicator for population size. Results provide a baseline for future work and a proof-of-concept emphasising the need for future work and long-term surveillance, and highlight the need of similar programs at a regional and global levels worldwide.


Assuntos
Antibacterianos , Águas Residuárias , Antibacterianos/análise , Projetos Piloto , Genes Bacterianos , RNA Ribossômico 16S/genética , Cromatografia Líquida , Prevalência , Farmacorresistência Bacteriana/genética , Espectrometria de Massas em Tandem
3.
Chemosphere ; 346: 140587, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918528

RESUMO

Antibiotic residues can reach aquatic ecosystems through urban wastewater discharges, posing an ecotoxicological risk for aquatic organisms and favoring the development of bacterial resistance. To assess the emission rate and hazardousness of these compounds, it is important to carry out periodic chemical monitoring campaigns that provide information regarding the actual performance of wastewater treatment plants (WWTPs) and the potential impact of the treated wastewater in the aquatic environment. In this study, 18 of the most widely consumed antibiotics in Spain were determined by liquid chromatography-tandem mass spectrometry in both influent (IWW) and effluent wastewater (EWW) samples collected over four seasons along 2021-2022. Eleven antibiotics were detected in EWW with azithromycin, ciprofloxacin and levofloxacin showing the highest concentration levels (around 2 µg L-1 of azithromycin and 0.4 µg L-1 of quinolone compounds). Data showed that only 4 out of the 11 compounds were removed by more than 50 % in the WWTP, with sulfamethoxazole standing out with an average removal efficiency >80 %. The risk that treated water could pose to the aquatic environment was also assessed, with 6 compounds indicating a potential environmental risk by exceeding established ecotoxicological and resistance thresholds. Based on the risk assessment, the WWTP removal efficiency required to reduce such risk for antibiotics was estimated. In addition, pooled wastewater samples were screened by LC coupled to high resolution mass spectrometry with ion mobility separation, searching for metabolites and transformation products of the antibiotics investigated to widen future research. Studies like this are crucial to map the impact of antibiotic pollution and to provide the basis for designing water quality and risk prevention monitoring programs.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Antibacterianos/análise , Azitromicina , Eliminação de Resíduos Líquidos/métodos , Ecossistema , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Espectrometria de Massas em Tandem
4.
Anal Chim Acta ; 1239: 340739, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36628733

RESUMO

The research on antibiotics occurrence in the aquatic environment has become a hot topic in the last years due to their potential negative effects, associated to possible bacterial antibiotic-resistance, after continuous exposure to these compounds. Most of antibiotic residues are not completely removed in the wastewater treatment plants (WWTPs) and end up in the aquatic environment through treated wastewater (WW). The development of reliable analytical methodologies for the determination of antibiotics in influent (IWW) and effluent wastewater (EWW) is needed with different purposes, among others: monitoring their occurrence in the aquatic environment, performing environmental risk assessment, estimating removal efficiencies of WWTPs, or estimating the consumption of these compounds. In this paper, we perform an in-depth investigation on analytical key issues that pose difficulties in the determination of antibiotics in complex matrices, such as WW, and we identify challenges to be properly addressed for successful analysis. The analytical technique selected was liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS), as it is the most powerful and widely applied at present for antibiotic residues determination. The mass spectrometric behavior of 18 selected antibiotics, the chromatographic performance, ion ratio variations associated to the sample matrix when using different precursor ions or protomers, and the macrolides adsorption to glass vial, were some of the issues studied in this work. On the basis of the detailed study performed, an analytical LC-MS/MS method based on sample direct injection has been developed for quantification of 18 antibiotics in IWW and EWW, allowing their determination at low ng L-1 levels.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cromatografia Líquida , Espectrometria de Massas em Tandem/métodos , Antibacterianos/análise , Poluentes Químicos da Água/análise , Extração em Fase Sólida/métodos
5.
J Chromatogr A ; 1658: 462605, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34662823

RESUMO

The presence of antibiotics in the aquatic environment is becoming one of the main research focus of scientists and policy makers. Proof of that is the inclusion of four antibiotics, amongst which is amoxicillin, in the EU Watch List (WL) (Decision 2020/1161/EU)) of substances for water monitoring. The accurate quantification of amoxicillin in water at the sub-ppb levels required by the WL is troublesome due to its physicochemical properties. In this work, the analytical challenges related to the determination of amoxicillin, and six related penicillins (ampicillin, cloxacillin, dicloxacillin, penicillin G, penicillin V and oxacillin), have been carefully addressed, including sample treatment, sample stability, chromatographic analysis and mass spectrometric detection by triple quadrupole. Given the low recoveries obtained using different solid-phase extraction cartridges, we applied the direct injection of water samples using a reversed-phase chromatographic column that allowed working with 100% aqueous mobile phase. Matrix effects were evaluated and corrected using the isotopically labelled internal standard or correction factors based on signal suppression observed in the analysis of spiked samples. The methodology developed was satisfactorily validated at 50 and 500 ng L - 1 for the seven penicillins studied, and it was applied to different types of water matrices, revealing the presence of ampicillin in one surface water sample and cloxacillin in three effluent wastewater samples.


Assuntos
Amoxicilina , Água , Ampicilina/análise , Cromatografia Líquida de Alta Pressão , União Europeia , Penicilinas/análise , Extração em Fase Sólida
6.
Chemosphere ; 280: 130799, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34162120

RESUMO

Ion mobility separation (IMS) coupled to high resolution mass spectrometry (IMS-HRMS) is a promising technique for (non-)target/suspect analysis of micropollutants in complex matrices. IMS separates ionized compounds based on their charge, shape and size facilitating the removal of co-eluting isomeric/isobaric species. Additionally, IMS data can be translated into collision cross-section (CCS) values, which can be used to increase the identification reliability. However, IMS-HRMS for the screening of contaminants of emerging concern (CECs) have been scarcely explored. In this study, the role of IMS-HRMS for the identification of CECs in complex matrices is highlighted, with emphasis on when and with which purpose is of use. The utilization of IMS can result in much cleaner mass spectra, which considerably facilitates data interpretation and the obtaining of reliable identifications. Furthermore, the robustness of IMS measurements across matrices permits the use of CCS as an additional relevant parameter during the identification step even when reference standards are not available. Moreover, an effect on the number of true and false identifications could be demonstrated by including IMS restrictions within the identification workflow. Data shown in this work is of special interest for environmental researchers dealing with the detection of CECs with state-of-the-art IMS-HRMS instruments.


Assuntos
Espectrometria de Mobilidade Iônica , Isomerismo , Espectrometria de Massas , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
J Hazard Mater ; 412: 125277, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33951870

RESUMO

The widespread use of pesticides, especially in agricultural areas, makes necessary to control their presence in surrounding surface waters. The current study was designed to investigate the occurrence and ecological risks of pesticides and their transformation products in a Mediterranean river basin impacted by citrus agricultural production. Nineteen sites were monitored in three campaigns distributed over three different seasons. After a qualitative screening, 24 compounds was selected for subsequent quantitative analysis. As expected, the lower section of the river was most contaminated, with total concentration >5 µg/L in two sites near to the discharge area of wastewater treatment plants. The highest concentrations were found in September, after agricultural applications and when the river flow is reduced. Ecological risks were calculated using two mixture toxicity approaches (Toxic Unit and multi-substance Potentially Affected Fraction), which revealed high acute and chronic risks of imidacloprid to invertebrates, moderate-to-high risks of diuron, simazine and 2,4-D for primary producers, and moderate-to-high risks of thiabendazole for invertebrates and fish. This study shows that intensive agricultural production and the discharge of wastewater effluents containing pesticide residues from post-harvest citrus processing plants are threatening freshwater biodiversity. Further actions are recommended to control pesticide use and to reduce emissions.


Assuntos
Citrus , Praguicidas , Poluentes Químicos da Água , Animais , Monitoramento Ambiental , Praguicidas/análise , Praguicidas/toxicidade , Medição de Risco , Rios , Espanha , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
8.
Sci Total Environ ; 772: 144794, 2021 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-33770873

RESUMO

Data obtained from wastewater analysis can provide rapid and complementary insights in illicit drug consumption at community level. Within Europe, Spain is an important country of transit of both cocaine and cannabis. The quantity of seized drugs and prevalence of their use rank Spain at the top of Europe. Hence, the implementation of a wastewater monitoring program at national level would help to get better understanding of spatial differences and trends in use of illicit drugs. In this study, a national wastewater campaign was performed for the first time to get more insight on the consumption of illicit drugs within Spain. The 13 Spanish cities monitored cover approximately 6 million inhabitants (12.8% of the Spanish population). Untreated wastewater samples were analyzed for urinary biomarkers of amphetamine, methamphetamine, MDMA, cocaine, and cannabis. In addition, weekend samples were monitored for 17 new psychoactive substances. Cannabis and cocaine are the most consumed drugs in Spain, but geographical variations showed, for instance, comparatively higher levels of methamphetamine in Barcelona and amphetamine in Bilbao, with about 1-fold higher consumption of these two substances in such metropolitan areas. For amphetamine, an enantiomeric profiling was performed in order to assure the results were due to consumption and not to illegal dumping of production residues. Furthermore, different correction factors for the excretion of cannabis were used to compare consumption estimations. All wastewater results were compared with previously reported data, national seizure data and general population survey data, were a reasonable agreement was found. Daily and yearly drug consumption were extrapolated to the entire Spanish population with due precautions because of the uncertainty associated. These data was further used to estimate the retail drug market, where for instance cocaine illicit consumption alone was calculated to contribute to 0.2-0.5% of the Spanish gross domestic product (ca. 3000-6000 million Euro/year).


Assuntos
Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Poluentes Químicos da Água , Cidades , Europa (Continente) , Humanos , Espanha/epidemiologia , Detecção do Abuso de Substâncias , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Águas Residuárias/análise , Poluentes Químicos da Água/análise
9.
Biomedicines ; 10(1)2021 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-35052683

RESUMO

Lineage tracing studies have become a well-suited approach to reveal cellular hierarchies and tumor heterogeneity. Cellular heterogeneity, particularly in breast cancer, is still one of the main concerns regarding tumor progression and resistance to anti-cancer therapies. Here, we review the current knowledge about lineage tracing analyses that have contributed to an improved comprehension of the complexity of mammary tumors, highlighting how targeting different mammary epithelial cells and tracing their progeny can be useful to explore the intra- and inter-heterogeneity observed in breast cancer. In addition, we examine the strategies used to identify the cell of origin in different breast cancer subtypes and summarize how cellular plasticity plays an important role during tumorigenesis. Finally, we evaluate the clinical implications of lineage tracing studies and the challenges remaining to address tumor heterogeneity in breast cancer.

10.
Environ Int ; 144: 106004, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32745782

RESUMO

Pharmaceuticals are biologically active molecules that may exert toxic effects to a wide range of aquatic organisms. They are considered contaminants of emerging concern due to their common presence in wastewaters and in the receiving surface waters, and the lack of specific regulations to monitor their environmental occurrence and risks. In this work, the environmental exposure and risks of pharmaceuticals have been studied in the Mijares River, Eastern Mediterranean coast (Spain). A total of 57 surface water samples from 19 sampling points were collected in three monitoring campaigns between June 2018 and February 2019. A list of 40 compounds was investigated using a quantitative target UHPLC-MS/MS method. In order to complement the data obtained, a wide-scope screening of pharmaceuticals and metabolites was also performed by UHPLC-HRMS. The ecological risks posed by the pharmaceutical mixtures were evaluated using species sensitivity distributions built with chronic toxicity data for aquatic organisms. In this study, up to 69 pharmaceuticals and 9 metabolites were identified, out of which 35 compounds were assessed using the quantitative method. The highest concentrations in water corresponded to acetaminophen, gabapentin, venlafaxine, valsartan, ciprofloxacin and diclofenac. The compounds that were found to exert the highest toxic pressure on the aquatic ecosystems were principally analgesic/anti-inflammatory drugs and antibiotics. These were: phenazone > azithromycin > diclofenac, and to a lower extent norfloxacin > ciprofloxacin > clarithromycin. The monitored pharmaceutical mixtures are expected to exert severe ecological risks in areas downstream of WWTP discharges, with the percentage of aquatic species affected ranging between 65% and 82% in 3 out of the 19 evaluated sites. In addition, five antibiotics were found to exceed antibiotic resistance thresholds, thus potentially contributing to resistance gene enrichment in environmental bacteria. This work illustrates the wide use and impact of pharmaceuticals in the area under study, and the vulnerability of surface waters if only conventional wastewater treatments are applied. Several compounds included in this study should be incorporated in future water monitoring programs to help in the development of future regulations, due to their potential risk to the aquatic environment.


Assuntos
Preparações Farmacêuticas , Poluentes Químicos da Água , Ecossistema , Monitoramento Ambiental , Medição de Risco , Espanha , Espectrometria de Massas em Tandem , Águas Residuárias/análise , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
11.
Sci Total Environ ; 548-549: 211-220, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26802349

RESUMO

The solid-waste treatment plant of RECIPLASA is located in the municipality of Onda (Castellón province), which is an important agricultural area of Spain, with predominance of citrus crops. In this plant, all urban solid wastes from the town of Castellón (around 200,000 inhabitants) and other smaller towns as Almassora, Benicàssim, Betxí, Borriana, L'Alcora, Onda and Vila-Real are treated. In order to evaluate the potential impact of this plant on the surrounding water, both surface and groundwater, a comprehensive monitoring of organic pollutants has been carried out along 2011, 2012 and 2013. To this aim, an advanced analytical strategy was applied for wide-scope screening, consisting on the complementary use of liquid chromatography (LC) and gas chromatography (GC) coupled to mass spectrometry (MS) with quadrupole (Q)-time of flight analyser (TOF). A generic solid-phase extraction with Oasis HLB cartridges was applied prior to the chromatographic analysis. The screening included more than 1500 organic pollutants as target compounds, such as pesticides, pharmaceuticals, veterinary drugs, drugs of abuse, UV-filters, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), among others. Pesticides, mainly herbicides, were the compounds more frequently detected. Other compounds as antioxidants, cosmetics, drugs of abuse, PAHs, pharmaceuticals and UV filters, were also identified in the screening though at much lower frequency. Once the screening was made, quantitative analysis focused on the compounds more frequently detected was subsequently applied using LC coupled to tandem MS with triple quadrupole analyser. In this way, up to 24 pesticides and transformation products (TPs), 7 pharmaceuticals, one drug of abuse and its metabolite could be quantified at sub-ppb concentrations. Along the three years of study, ten compounds were found at concentrations higher than 0.1µg/L. Most of them were pesticides and TPs, a fact that illustrates that the main source of pollution seems to be the agricultural activities in this area.


Assuntos
Monitoramento Ambiental , Água Doce/química , Água Subterrânea/química , Eliminação de Resíduos , Poluentes Químicos da Água/análise , Éteres Difenil Halogenados/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Espanha
12.
J Mass Spectrom ; 50(11): 1234-44, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26505768

RESUMO

This work presents a strategy for elucidation of unknown migrants from plastic food contact materials (baby bottles) using a combination of analytical techniques in an untargeted approach. First, gas chromatography (GC) coupled to mass spectrometry (MS) in electron ionisation mode was used to identify migrants through spectral library matching. When no acceptable match was obtained, a second analysis by GC-(electron ionisation) high resolution mass spectrometry time of flight (TOF) was applied to obtain accurate mass fragmentation spectra and isotopic patterns. Databases were then searched to find a possible elemental composition for the unknown compounds. Finally, a GC hybrid quadrupole-TOF-MS with an atmospheric pressure chemical ionisation source was used to obtain the molecular ion or the protonated molecule. Accurate mass data also provided additional information on the fragmentation behaviour as two acquisition functions with different collision energies were available (MS(E) approach). In the low-energy function, limited fragmentation took place, whereas for the high-energy function, fragmentation was enhanced. For less volatile unknowns, ultra-high pressure liquid chromatography-quadrupole-TOF-MS was additionally applied. Using a home-made database containing common migrating compounds and plastic additives, tentative identification was made for several positive findings based on accurate mass of the (de)protonated molecule, product ion fragments and characteristic isotopic ions. Six illustrative examples are shown to demonstrate the modus operandi and the difficulties encountered during identification. The combination of these techniques was proven to be a powerful tool for the elucidation of unknown migrating compounds from plastic baby bottles.


Assuntos
Utensílios de Alimentação e Culinária , Embalagem de Alimentos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Plásticos/química , Pressão Atmosférica , Hidroxitolueno Butilado/análogos & derivados , Hidroxitolueno Butilado/análise , Cromatografia Líquida de Alta Pressão/métodos , Bases de Dados de Compostos Químicos , Estrutura Molecular , Processamento de Sinais Assistido por Computador , Ácidos Esteáricos/análise , Tiofenos/análise
13.
Anal Chem ; 87(16): 8373-80, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26200763

RESUMO

The use of untargeted metabolomics for the discovery of markers is a promising and virtually unexplored tool in the doping control field. Hybrid quadrupole time-of-flight (QTOF) and hybrid quadrupole Orbitrap (Q Exactive) mass spectrometers, coupled to ultrahigh pressure liquid chromatography, are excellent tools for this purpose. In the present work, QTOF and Q Exactive have been used to look for markers for testosterone cypionate misuse by means of untargeted metabolomics. Two different groups of urine samples were analyzed, collected before and after the intramuscular administration of testosterone cypionate. In order to avoid analyte losses in the sample treatment, samples were just 2-fold diluted with water and directly injected into the chromatographic system. Samples were analyzed in both positive and negative ionization modes. Data from both systems were treated under untargeted metabolomic strategies using XCMS application and multivariate analysis. Results from the two mass spectrometers differed in the number of detected features, but both led to the same potential marker for the particular testosterone ester misuse. The in-depth study of the MS and MS/MS behavior of this marker allowed for the establishment of 1-cyclopentenoylglycine as a feasible structure. The putative structure was confirmed by comparison with synthesized material. This potential marker seems to come from the metabolism of the cypionic acid release after hydrolysis of the administered ester. Its suitability for doping control has been evaluated.


Assuntos
Cromatografia Líquida de Alta Pressão , Metabolômica , Espectrometria de Massas em Tandem , Testosterona/análise , Urinálise/métodos , Humanos , Masculino , Estrutura Molecular , Padrões de Referência , Testosterona/química , Testosterona/metabolismo
14.
Aquat Toxicol ; 154: 131-40, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24880785

RESUMO

Water pollution represents a threat of increasing importance to human health. Bivalve mollusks are filter-feeding organisms that can accumulate chemical and microbiological contaminants in their tissues from very low concentrations in the water or sediments. Consumption of contaminated shellfish is one of the main causes of seafood poisoning. Thus, marine bivalves are normally depurated in sterilized seawater for 48 h to allow the removal of bacteria. However, this depuration time might be insufficient to eliminate chemical contaminants from their tissues. We have developed a novel technology that accelerates up to fourfold the excretion rate of xenobiotics in bivalves by treatment with the antioxidant and glutathione (GSH) pro-drug N-acetylcysteine (NAC) during the depuration period. NAC improved dose-dependently the detoxification of the organophosphate (OP) pesticide fenitrothion in the mussel Mytilus galloprovincialis, diminishing its levels up to nearly a hundred fold compared to conventional depuration, by enhancing the glutathione S-transferase (GST) activity and inducing the GSH anabolism (GSH synthesis and reduction by glutathione reductase). Notably, this induction in GSH anabolism and GST activity was also observed in uncontaminated bivalves treated with NAC. As the GSH pathway is involved in the detoxification of many pollutants and biotoxins from harmful algal blooms, we validated this proof of principle in king scallops (Pecten maximus) that naturally accumulated the amnesic shellfish poisoning (ASP) toxin domoic acid. We illustrate here a method that enhances the elimination of organic contaminants in shellfish, opening new avenues of depuration of marine organisms.


Assuntos
Acetilcisteína/farmacologia , Pecten/efeitos dos fármacos , Xenobióticos/metabolismo , Animais , Ativação Enzimática/efeitos dos fármacos , Fenitrotion/análise , Fenitrotion/metabolismo , Fenitrotion/toxicidade , Sequestradores de Radicais Livres/farmacologia , Glutationa/análise , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Humanos , Inativação Metabólica , Mytilus/química , Mytilus/efeitos dos fármacos , Mytilus/metabolismo , Pecten/metabolismo , Intoxicação por Frutos do Mar/prevenção & controle , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/toxicidade , Xenobióticos/análise , Xenobióticos/toxicidade
15.
J Chromatogr A ; 1314: 224-40, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24070626

RESUMO

A multi-residue method for the determination of 142 pesticide residues in fruits and vegetables has been developed using a new atmospheric pressure chemical ionization (APCI) source for coupling gas chromatography (GC) to tandem mass spectrometry (MS). Selected reaction monitoring (SRM) mode has been applied, acquiring three transitions for each compound. In contrast to the extensive fragmentation typically obtained in classical electron ionization (EI), the soft APCI ionization allowed the selection of highly abundant protonated molecules ([M+H](+)) as precursor ions for most compounds. This was favorable for both sensitivity and selectivity. Validation of the method was performed in which both quantitative and qualitative parameters were assessed using orange, tomato and carrot samples spiked at two levels, 0.01 and 0.1mg/kg. The QuEChERS method was used for sample preparation, followed by a 10-fold dilution of the final acetonitrile extract with a mixture of hexane and acetone. Recovery and precision were satisfactory in the three matrices, at both concentration levels. Very low limits of detection (down 0.01µg/kg for the most sensitive compounds) were achieved. Ion ratios were consistent and identification according to EU criteria was possible in 80% (0.01mg/kg) to 96% (0.1mg/kg) of the pesticide/matrix combinations. The method was applied to the analysis of various fruits and vegetables from the Mediterranean region of Spain.


Assuntos
Pressão Atmosférica , Frutas/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Praguicidas/análise , Verduras/química , Limite de Detecção
16.
Anal Chim Acta ; 702(1): 62-71, 2011 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-21819861

RESUMO

In this work, we have developed a sensitive method for detection and quantification of eight N-nitrosamines, N-nitrosodimethylamine (NDMA), N-nitrosomorpholine (NMor), N-nitrosomethylethylamine (NMEA), N-nitrosopirrolidine (NPyr), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitroso-n-dipropylamine (NDPA) and N-nitrosodi-n-butylamine (NDBA) in drinking water. The method is based on liquid chromatography coupled to tandem mass spectrometry, using atmospheric pressure chemical ionization (APCI) in positive mode with a triple quadrupole analyzer (QqQ). The simultaneous acquisition of two MS/MS transitions in selected reaction monitoring mode (SRM) for each compound, together with the evaluation of their relative intensity, allowed the simultaneous quantification and reliable identification in water at ppt levels. Empirical formula of the product ions selected was confirmed by UHPLC-(Q)TOF MS accurate mass measurements from reference standards. Prior to LC-MS/MS QqQ analysis, a preconcentration step by off-line SPE using coconut charcoal EPA 521 cartridges (by passing 500 mL of water sample) was necessary to improve the sensitivity and to meet regulation requirements. For accurate quantification, two isotope labelled nitrosamines (NDMA-d(6) and NDPA-d(14)) were added as surrogate internal standards to the samples. The optimized method was validated at two concentration levels (10 and 100 ng L(-1)) in drinking water samples, obtaining satisfactory recoveries (between 90 and 120%) and precision (RSD<20%). Limits of detection were found to be in the range of 1-8 ng L(-1). The described methodology has been applied to different types of water samples: chlorinated from drinking water and wastewater treatment plants (DWTP and WWTP, respectively), wastewaters subjected to ozonation and tap waters.


Assuntos
Cromatografia Líquida/métodos , Dimetilnitrosamina/análise , Água Potável/química , Nitrosaminas/análise , Extração em Fase Sólida/métodos , Espectrometria de Massas em Tandem/instrumentação , Poluentes Químicos da Água/análise , Pressão Atmosférica , Dietilnitrosamina/análise , Dimetilnitrosamina/análogos & derivados , Padrões de Referência , Sensibilidade e Especificidade
17.
Rapid Commun Mass Spectrom ; 25(11): 1589-99, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21594934

RESUMO

Investigation of trace-level non-target compounds by gas chromatography/mass spectrometry (GC/MS) often is a challenging task that requires powerful software tools to detect the unknown components, to obtain the deconvoluted mass spectra, and to interpret the data if no acceptable library match is obtained. In this paper, the complementary use of electron ionization (EI) and chemical ionization (CI) is investigated in combination with GC/time-of-flight (TOF) MS for the elucidation of organic non-target (micro)contaminants in water samples. Based on accurate mass measurement of the molecular and fragment ions from the TOF MS, empirical formulae were calculated. Isotopic patterns, carbon number prediction filter and nitrogen rule were used to reduce the number of possible formulae. The candidate formulae were searched in databases to find possible chemical structures. Selection from possible structure candidates was achieved using information on substructures and observed neutral losses derived from the fragment ions. Four typical examples (bifenazate, boscalid, epoxiconazole, and fenhexamid) are used to illustrate the methodology applied and the various difficulties encountered in this process. Our results indicate that elucidation of unknowns cannot be achieved by following a standardized procedure, as both expertise and creativity are necessary in the process.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Cátions/química , Cátions/isolamento & purificação , Metano/química , Praguicidas/análise
18.
J Chromatogr A ; 1218(2): 303-15, 2011 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-21134677

RESUMO

In this work, a multiclass screening method for organic contaminants in natural and wastewater has been developed and validated for qualitative purposes, i.e. to ensure the reliable and sensitive identification of compounds detected in samples at a certain level of concentration. The screening is based on the use of GC-TOF MS, and the sample procedure involves solid phase extraction with C(18) cartridges. Around 150 organic contaminants from different chemical families were investigated, including PAHs, octyl/nonyl phenols, PCBs, PBDEs and a notable number of pesticides, such as insecticides (organochlorines, organophosphorus, carbamates and pyrethroids), herbicides (triazines and chloroacetanilides), fungicides and several relevant metabolites. Surface water, ground water and effluent wastewater were spiked with all target analytes at three concentration levels (0.02, 0.1 and 1 µg/L). Influent wastewater and raw leachate from a municipal solid waste treatment plant were spiked at two levels (0.1 and 1 µg/L). Up to five m/z ions were evaluated for every compound. The identification criterion was the presence of, at least, two m/z ions at the expected retention time, measured at their accurate mass, and the accomplishment of the Q/q(i) intensity ratio within specified tolerances. The vast majority of compounds investigated were correctly identified in the samples spiked at 1 µg/L. When analyte concentration was lowered down to 0.1 µg/L the identification was more problematic, especially in complex-matrix samples like influent wastewater. On the contrary, many contaminants could be properly identified at the lowest level 0.02 µg/L in cleaner matrices. The procedure was applied to the screening of water samples of different origin and matrix composition and allowed the detection of several target contaminants. A highly reliable identification could be carried out thanks to the sensitive full-spectrum acquisition at accurate mass, the high selectivity reached with the use of narrow-mass window extracted ion chromatograms, the low mass errors observed in the positive detections and the Q/q ratio accomplishment.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Compostos Orgânicos/análise , Poluentes Químicos da Água/análise , Clorfenvinfos/análise , Clorfenvinfos/química , Compostos Orgânicos/química , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Esgotos/química , Uracila/análogos & derivados , Uracila/análise , Uracila/química , Poluentes Químicos da Água/química
19.
J Sep Sci ; 32(12): 2090-102, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19479759

RESUMO

In this work, a multiresidue method for the quantification and confirmation of around 30 organohalogenated compounds in human breast tissue samples has been developed. Analytes tested included organochlorine (OC) (pesticides and polychlorinated biphenyls) and organobromine (OBr) (polybrominated diphenyl ether) compounds. The approach is based on a simple extraction with hexane, followed by a SPE clean-up using silica cartridges and final measurement by GC coupled to triple quadrupole MS. Analyses were performed in both ionizations, electron impact (EI) (selected reaction monitoring (SRM) mode) and negative chemical ionization (NCI) (selected ion recording (SIR) mode). Three isotopically labeled standards were added before extraction and used as surrogates: HCB-13C6, lindane-D6 and p,p'-DDE-D8. The method was validated in terms of accuracy, precision, LOQ and LOD and confirmation reliability, using breast tissue spiked at three concentration levels in the range 1-100 ng/g for OC compounds and at two levels 0.1 and 10 ng/g for OBr compounds (0.5 and 50 ng/g for BDE 209). The usefulness of the developed method was tested by the analysis of real human samples, giving as a result the detection of several OC and OBr compounds in different samples analyzed. The acquisition of at least two SRM transitions (in EI) or ions (in NCI) per analyte allowed positive findings to be confirmed by accomplishment of ion ratios between the quantification and the confirmation transitions or ions.


Assuntos
Mama/química , Poluentes Ambientais/análise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Éteres Difenil Halogenados/análise , Hidrocarbonetos Clorados/análise , Praguicidas/análise , Bifenilos Policlorados/análise , Feminino , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Humanos , Reprodutibilidade dos Testes
20.
J Chromatogr A ; 1216(15): 3078-89, 2009 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-19201418

RESUMO

An ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method has been developed for the simultaneous quantification and confirmation of 11 basic/acidic illicit drugs and relevant metabolites in surface and urban wastewater at ng/L levels. The sample pre-treatment consisted of a solid-phase extraction using Oasis MCX cartridges. Analyte deuterated compounds were used as surrogate internal standards (except for norbenzoylecgonine and norcocaine) to compensate for possible errors resulting from matrix effects and those associated to the sample preparation procedure. After SPE enrichment, the selected drugs were separated within 6min under UHPLC optimized conditions. To efficiently combine UHPLC with MS/MS, a fast-acquisition triple quadrupole mass analyzer (TQD from Waters) in positive-ion mode (ESI+) was used. The excellent selectivity and sensitivity of the TQD analyzer in selected reaction monitoring mode allowed quantification and reliable identification at the LOQ levels. Satisfactory recoveries (70-120%) and precision (RSD<20%) were obtained for most compounds in different types of water samples, spiked at two concentration levels [limit of quantification (LOQ) and 10LOQ]. Thus, surface water was spiked at 30 ng/L and 300 ng/L (amphetamine and amphetamine-like stimulants), 10 ng/L and 100 ng/L (cocaine and its metabolites), 300 ng/L and 3000 ng/L (tetrahydrocannabinol-COOH). Recovery experiments in effluent and influent wastewater were performed at spiking levels of three and fifteen times higher than the levels spiked in surface water, respectively. The validated method was applied to urban wastewater samples (influent and effluent). The acquisition of three selected reaction monitoring transitions per analyte allowed positive findings to be confirmed by accomplishment of ion ratios between the quantification transition and two additional specific confirmation transitions. In general, drug consumption increased in the weekends and during an important musical event. The highest concentration levels were 27.5 microg/L and 10.5 microg/L, which corresponded to 3,4-methylenedioxymethamphetamine (MDMA, or ecstasy) and to benzoylecgonine (a cocaine metabolite), respectively. The wastewater treatment plants showed good removal efficiency (>99%) for low levels of illicit drugs in water, but some difficulties were observed when high drug levels were present in wastewaters.


Assuntos
Anfetamina/análise , Canabinoides/análise , Cromatografia Líquida de Alta Pressão/métodos , Cocaína/análise , Drogas Ilícitas/análise , Espectrometria de Massas em Tandem/métodos , Poluentes Químicos da Água/análise , Anfetamina/metabolismo , Cannabis/química , Cannabis/metabolismo , Cocaína/metabolismo , Humanos , Drogas Ilícitas/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Extração em Fase Sólida , Eliminação de Resíduos Líquidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...