Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 11(9)2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32933035

RESUMO

The current gold standard technique for treatment of anterior cruciate ligament (ACL) injury is reconstruction with autograft. These treatments have a relatively high failure and re-tear rate. To overcome this, tissue engineering and additive manufacturing are being used to explore the potential of 3D scaffolds as autograft substitutes. However, mechanically optimal polymers for this have yet to be identified. Here, we use 3D printing technology and various materials with the aim of fabricating constructs better matching the mechanical properties of the native ACL. A fused deposition modeling (FDM) 3D printer was used to microfabricate dog bone-shaped specimens from six different polymers-PLA, PETG, Lay FOMM 60, NinjaFlex, NinjaFlex-SemiFlex, and FlexiFil-at three different raster angles. The tensile mechanical properties of these polymers were determined from stress-strain curves. Our results indicate that no single material came close enough to successfully match reported mechanical properties of the native ACL. However, PLA and PETG had similar ultimate tensile strengths. Lay FOMM 60 displayed a percentage strain at failure similar to reported values for native ACL. Furthermore, raster angle had a significant impact on some mechanical properties for all of the materials except for FlexiFil. We therefore conclude that while none of these materials alone is optimal for mimicking ACL mechanical properties, there may be potential for creating a 3D-printed composite constructs to match ACL mechanical properties. Further investigations involving co-printing of stiff and elastomeric materials must be explored.

2.
Elife ; 92020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32589138

RESUMO

Understanding how learned fear can be reduced is at the heart of treatments for anxiety disorders. Tremendous progress has been made in this regard through extinction training in which the aversive outcome is omitted. However, current progress almost entirely rests on this single paradigm, resulting in a very specialized knowledgebase at the behavioural and neural level of analysis. Here, we used a dual-paradigm approach to show that different methods that lead to reduction in learned fear in rats are dissociated in the cortex. We report that the infralimbic cortex has a very specific role in fear reduction that depends on the omission of aversive events but not on overexpectation. The orbitofrontal cortex, a structure generally overlooked in fear, is critical for downregulating fear when novel predictions about upcoming aversive events are generated, such as when fear is inflated or overexpected, but less so when an expected aversive event is omitted.


Assuntos
Extinção Psicológica , Medo/fisiologia , Aprendizagem , Motivação/fisiologia , Córtex Pré-Frontal/fisiologia , Ratos/fisiologia , Animais , Condicionamento Clássico , Masculino , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA