Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genetics ; 224(3)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-36961731

RESUMO

Identifying the genetic architecture of complex traits is important to many geneticists, including those interested in human disease, plant and animal breeding, and evolutionary genetics. Advances in sequencing technology and statistical methods for genome-wide association studies have allowed for the identification of more variants with smaller effect sizes, however, many of these identified polymorphisms fail to be replicated in subsequent studies. In addition to sampling variation, this failure to replicate reflects the complexities introduced by factors including environmental variation, genetic background, and differences in allele frequencies among populations. Using Drosophila melanogaster wing shape, we ask if we can replicate allelic effects of polymorphisms first identified in a genome-wide association studies in three genes: dachsous, extra-macrochaete, and neuralized, using artificial selection in the lab, and bulk segregant mapping in natural populations. We demonstrate that multivariate wing shape changes associated with these genes are aligned with major axes of phenotypic and genetic variation in natural populations. Following seven generations of artificial selection along the dachsous shape change vector, we observe genetic differentiation of variants in dachsous and genomic regions containing other genes in the hippo signaling pathway. This suggests a shared direction of effects within a developmental network. We also performed artificial selection with the extra-macrochaete shape change vector, which is not a part of the hippo signaling network, but showed a largely shared direction of effects. The response to selection along the emc vector was similar to that of dachsous, suggesting that the available genetic diversity of a population, summarized by the genetic (co)variance matrix (G), influenced alleles captured by selection. Despite the success with artificial selection, bulk segregant analysis using natural populations did not detect these same variants, likely due to the contribution of environmental variation and low minor allele frequencies, coupled with small effect sizes of the contributing variants.


Assuntos
Drosophila melanogaster , Estudo de Associação Genômica Ampla , Animais , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Herança Multifatorial , Fenótipo , Frequência do Gene , Variação Genética , Seleção Genética , Asas de Animais
2.
Emerg Infect Dis ; 28(1): 238-241, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34932458

RESUMO

We report a multistate Salmonella enterica serovar Heidelberg outbreak in Australia during 2018-2019. Laboratory investigation of cases reported across 5 jurisdictions over a 7-month period could not identify a source of infection but detected indicators of severity and invasiveness. The hospitalization rate of 36% suggested a moderately severe clinical picture.


Assuntos
Intoxicação Alimentar por Salmonella , Salmonella enterica , Austrália/epidemiologia , Surtos de Doenças , Humanos , Intoxicação Alimentar por Salmonella/epidemiologia , Sorogrupo
3.
Microbiol Resour Announc ; 10(1)2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33414297

RESUMO

Citrobacter is a ubiquitous bacterial genus whose members inhabit a variety of niches. Some species are clinically important for both antimicrobial resistance (AMR) carriage and as the cause of nosocomial infections. Surveillance of Citrobacter species in the environment can provide indicators of the spread of AMR genes outside clinical spaces. In this study, we present draft genome sequences of four Citrobacter isolates obtained from three species of wild Australian shorebirds.

4.
Microb Genom ; 6(12)2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33180013

RESUMO

Complete genomes of microbial pathogens are essential for the phylogenomic analyses that increasingly underpin core public health laboratory activities. Here, we announce a BioProject (PRJNA556438) dedicated to sharing complete genomes chosen to represent a range of pathogenic bacteria with regional importance to Australia and the Southwest Pacific; enriching the catalogue of globally available complete genomes for public health while providing valuable strains to regional public health microbiology laboratories. In this first step, we present 26 complete high-quality bacterial genomes. Additionally, we describe here a framework for reconstructing complete microbial genomes and highlight some of the challenges and considerations for accurate and reproducible genome reconstruction.


Assuntos
Bactérias/classificação , Genoma Bacteriano , Sequenciamento Completo do Genoma/métodos , Austrália , Bactérias/genética , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Filogenia , Saúde Pública
5.
Appl Environ Microbiol ; 86(19)2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32737126

RESUMO

Salmonella enterica serovar Hvittingfoss is an important foodborne serotype of Salmonella, being detected in many countries where surveillance is conducted. Outbreaks can occur, and there was a recent multistate foodborne outbreak in Australia. S Hvittingfoss can be found in animal populations, though a definitive animal host has not been established. Six species of birds were sampled at Roebuck Bay, a designated Ramsar site in northwestern Australia, resulting in 326 cloacal swabs for bacterial culture. Among a single flock of 63 bar-tailed godwits (Limosa lapponica menzbieri) caught at Wader Spit, Roebuck Bay, in 2018, 17 (27%) were culture positive for Salmonella All other birds were negative for Salmonella The isolates were identified as Salmonella enterica serovar Hvittingfoss. Phylogenetic analysis revealed a close relationship between isolates collected from godwits and the S Hvittingfoss strain responsible for a 2016 multistate foodborne outbreak originating from tainted cantaloupes (rock melons) in Australia. While it is not possible to determine how this strain of S Hvittingfoss was introduced into the bar-tailed godwits, these findings show that wild Australian birds are capable of carrying Salmonella strains of public health importance.IMPORTANCESalmonella is a zoonotic pathogen that causes gastroenteritis and other disease presentations in both humans and animals. Serovars of S. enterica commonly cause foodborne disease in Australia and globally. In 2016-2017, S Hvittingfoss was responsible for an outbreak that resulted in 110 clinically confirmed human cases throughout Australia. The origin of the contamination that led to the outbreak was never definitively established. Here, we identify a migratory shorebird, the bar-tailed godwit, as an animal reservoir of S Hvittingfoss. These birds were sampled in northwestern Australia during their nonbreeding period. The presence of a genetically similar S Hvittingfoss strain circulating in a wild bird population, 2 years after the 2016-2017 outbreak and ∼1,500 km from the suspected source of the outbreak, demonstrates a potentially unidentified environmental reservoir of S Hvittingfoss. While the birds cannot be implicated in the outbreak that occurred 2 years prior, this study does demonstrate the potential role for wild birds in the transmission of this important foodborne pathogen.


Assuntos
Doenças das Aves/epidemiologia , Charadriiformes , Salmonelose Animal/epidemiologia , Salmonella enterica/isolamento & purificação , Animais , Doenças das Aves/microbiologia , Feminino , Incidência , Masculino , Prevalência , Salmonelose Animal/microbiologia , Sorogrupo , Austrália Ocidental/epidemiologia
6.
Emerg Infect Dis ; 26(6): 1326-1328, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213261

RESUMO

Candida auris is an emerging global healthcare-associated pathogen. During July-December 2018, four patients with C. auris were identified in Victoria, Australia, all with previous overseas hospitalization. Phylogenetic analysis revealed putative transmission between 2 patients and suspected overseas acquisition in the others. Vigilant screening of at-risk patients is required.


Assuntos
Candida , Candidíase , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Candida/genética , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candidíase/epidemiologia , Instalações de Saúde , Humanos , Filogenia , Vitória
7.
PLoS One ; 14(5): e0216860, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31150415

RESUMO

The fruit fly, Drosophila melanogaster, has proven to be an excellent model organism for genetic, genomic and neurobiological studies. However, relatively little is known about the natural history of D. melanogaster. In particular, neither the natural predators faced by wild populations of D. melanogaster, nor the anti-predatory behaviors they may employ to escape and avoid their enemies have been documented. Here we observe and describe the influence of two predators that differ in their mode of hunting: zebra jumping spiders, Salticus scenicus (active hunters) and Chinese praying mantids, Tenodera sinensis (ambush predators) on the behavioral repertoire of Drosophila melanogaster. We documented three particularly interesting behaviors: abdominal lifting, stopping, and retreat-which were performed at higher frequency by D. melanogaster in the presence of predators. While mantids had only a modest influence on the locomotory activity of D. melanogaster, we observed a significant increase in the overall activity of D. melanogaster in the presence of jumping spiders. Finally, we observed considerable among-individual behavioral variation in response to both predators.


Assuntos
Locomoção/fisiologia , Mantódeos/fisiologia , Modelos Biológicos , Comportamento Predatório , Aranhas/fisiologia , Animais , Drosophila melanogaster
8.
Genetics ; 211(4): 1429-1447, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30792267

RESUMO

Due to the complexity of genotype-phenotype relationships, simultaneous analyses of genomic associations with multiple traits will be more powerful and informative than a series of univariate analyses. However, in most cases, studies of genotype-phenotype relationships have been analyzed only one trait at a time. Here, we report the results of a fully integrated multivariate genome-wide association analysis of the shape of the Drosophila melanogaster wing in the Drosophila Genetic Reference Panel. Genotypic effects on wing shape were highly correlated between two different laboratories. We found 2396 significant SNPs using a 5% false discovery rate cutoff in the multivariate analyses, but just four significant SNPs in univariate analyses of scores on the first 20 principal component axes. One quarter of these initially significant SNPs retain their effects in regularized models that take into account population structure and linkage disequilibrium. A key advantage of multivariate analysis is that the direction of the estimated phenotypic effect is much more informative than a univariate one. We exploit this fact to show that the effects of knockdowns of genes implicated in the initial screen were on average more similar than expected under a null model. A subset of SNP effects were replicable in an unrelated panel of inbred lines. Association studies that take a phenomic approach, considering many traits simultaneously, are an important complement to the power of genomics.


Assuntos
Proteínas de Drosophila/genética , Estudo de Associação Genômica Ampla/métodos , Polimorfismo de Nucleotídeo Único , Asas de Animais/crescimento & desenvolvimento , Animais , Drosophila melanogaster , Estudo de Associação Genômica Ampla/normas , Padrões de Referência , Asas de Animais/metabolismo
9.
PLoS Genet ; 13(11): e1007075, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29166655

RESUMO

For a given gene, different mutations influence organismal phenotypes to varying degrees. However, the expressivity of these variants not only depends on the DNA lesion associated with the mutation, but also on factors including the genetic background and rearing environment. The degree to which these factors influence related alleles, genes, or pathways similarly, and whether similar developmental mechanisms underlie variation in the expressivity of a single allele across conditions and among alleles is poorly understood. Besides their fundamental biological significance, these questions have important implications for the interpretation of functional genetic analyses, for example, if these factors alter the ordering of allelic series or patterns of complementation. We examined the impact of genetic background and rearing environment for a series of mutations spanning the range of phenotypic effects for both the scalloped and vestigial genes, which influence wing development in Drosophila melanogaster. Genetic background and rearing environment influenced the phenotypic outcome of mutations, including intra-genic interactions, particularly for mutations of moderate expressivity. We examined whether cellular correlates (such as cell proliferation during development) of these phenotypic effects matched the observed phenotypic outcome. While cell proliferation decreased with mutations of increasingly severe effects, surprisingly it did not co-vary strongly with the degree of background dependence. We discuss these findings and propose a phenomenological model to aid in understanding the biology of genes, and how this influences our interpretation of allelic effects in genetic analysis.


Assuntos
Drosophila melanogaster/genética , Epistasia Genética , Patrimônio Genético , Mutação , Asas de Animais/metabolismo , Alelos , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Genótipo , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , Masculino , Proteínas Nucleares/genética , Fenótipo , Fatores de Transcrição/genética , Asas de Animais/crescimento & desenvolvimento
10.
J Physiol Paris ; 110(3 Pt B): 259-272, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27769923

RESUMO

Electric fish have served as a model system in biology since the 18th century, providing deep insight into the nature of bioelectrogenesis, the molecular structure of the synapse, and brain circuitry underlying complex behavior. Neuroethologists have collected extensive phenotypic data that span biological levels of analysis from molecules to ecosystems. This phenotypic data, together with genomic resources obtained over the past decades, have motivated new and exciting hypotheses that position the weakly electric fish model to address fundamental 21st century biological questions. This review article considers the molecular data collected for weakly electric fish over the past three decades, and the insights that data of this nature has motivated. For readers relatively new to molecular genetics techniques, we also provide a table of terminology aimed at clarifying the numerous acronyms and techniques that accompany this field. Next, we pose a research agenda for expanding genomic resources for electric fish research over the next 10years. We conclude by considering some of the exciting research prospects for neuroethology that electric fish genomics may offer over the coming decades, if the electric fish community is successful in these endeavors.


Assuntos
Peixe Elétrico/genética , Etologia/tendências , Genoma/genética , Animais , Genômica , Modelos Biológicos
11.
Gigascience ; 4: 25, 2015 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-27390931

RESUMO

BACKGROUND: Extracting important descriptors and features from images of biological specimens is an ongoing challenge. Features are often defined using landmarks and semi-landmarks that are determined a priori based on criteria such as homology or some other measure of biological significance. An alternative, widely used strategy uses computational pattern recognition, in which features are acquired from the image de novo. Subsets of these features are then selected based on objective criteria. Computational pattern recognition has been extensively developed primarily for the classification of samples into groups, whereas landmark methods have been broadly applied to biological inference. RESULTS: To compare these approaches and to provide a general community resource, we have constructed an image database of Drosophila melanogaster wings - individually identifiable and organized by sex, genotype and replicate imaging system - for the development and testing of measurement and classification tools for biological images. We have used this database to evaluate the relative performance of current classification strategies. Several supervised parametric and nonparametric machine learning algorithms were used on principal components extracted from geometric morphometric shape data (landmarks and semi-landmarks). For comparison, we also classified phenotypes based on de novo features extracted from wing images using several computer vision and pattern recognition methods as implemented in the Bioimage Classification and Annotation Tool (BioCAT). CONCLUSIONS: Because we were able to thoroughly evaluate these strategies using the publicly available Drosophila wing database, we believe that this resource will facilitate the development and testing of new tools for the measurement and classification of complex biological phenotypes.


Assuntos
Algoritmos , Bases de Dados Factuais , Genótipo , Processamento de Imagem Assistida por Computador/métodos , Asas de Animais/anatomia & histologia , Animais , Drosophila melanogaster , Feminino , Masculino
12.
Genetics ; 198(4): 1473-81, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25326238

RESUMO

Gene and genome duplication events have created a large number of new genes in plants that can diverge by evolving new expression profiles and functions (neofunctionalization) or dividing extant ones (subfunctionalization). Alternative splicing (AS) generates multiple types of mRNA from a single type of pre-mRNA by differential intron splicing. It can result in new protein isoforms or downregulation of gene expression by transcript decay. Using RNA-seq, we investigated the degree to which alternative splicing patterns are conserved between duplicated genes in Arabidopsis thaliana. Our results revealed that 30% of AS events in α-whole-genome duplicates and 33% of AS events in tandem duplicates are qualitatively conserved within leaf tissue. Loss of ancestral splice forms, as well as asymmetric gain of new splice forms, may account for this divergence. Conserved events had different frequencies, as only 31% of shared AS events in α-whole-genome duplicates and 41% of shared AS events in tandem duplicates had similar frequencies in both paralogs, indicating considerable quantitative divergence. Analysis of published RNA-seq data from nonsense-mediated decay (NMD) mutants indicated that 85% of α-whole-genome duplicates and 89% of tandem duplicates have diverged in their AS-induced NMD. Our results indicate that alternative splicing shows a high degree of divergence between paralogs such that qualitatively conserved alternative splicing events tend to have quantitative divergence. Divergence in AS patterns between duplicates may be a mechanism of regulating expression level divergence.


Assuntos
Processamento Alternativo , Arabidopsis/genética , Perfilação da Expressão Gênica , Genes Duplicados , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Evolução Molecular , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Degradação do RNAm Mediada por Códon sem Sentido , Fatores de Transcrição/genética , Transcriptoma
13.
Philos Trans R Soc Lond B Biol Sci ; 369(1649): 20130252, 2014 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-25002697

RESUMO

A fundamental question in evolutionary biology is the relative importance of selection and genetic architecture in determining evolutionary rates. Adaptive evolution can be described by the multivariate breeders' equation (Δz(-)=Gß), which predicts evolutionary change for a suite of phenotypic traits (Δz(-)) as a product of directional selection acting on them (ß) and the genetic variance-covariance matrix for those traits (G ). Despite being empirically challenging to estimate, there are enough published estimates of G and ß to allow for synthesis of general patterns across species. We use published estimates to test the hypotheses that there are systematic differences in the rate of evolution among trait types, and that these differences are, in part, due to genetic architecture. We find some evidence that sexually selected traits exhibit faster rates of evolution compared with life-history or morphological traits. This difference does not appear to be related to stronger selection on sexually selected traits. Using numerous proposed approaches to quantifying the shape, size and structure of G, we examine how these parameters relate to one another, and how they vary among taxonomic and trait groupings. Despite considerable variation, they do not explain the observed differences in evolutionary rates.


Assuntos
Evolução Biológica , Variação Genética , Genética Populacional/métodos , Modelos Biológicos , Fenótipo , Seleção Genética , Especificidade da Espécie
14.
Evolution ; 67(2): 438-52, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23356616

RESUMO

Geographical patterns of morphological variation have been useful in addressing hypotheses about environmental adaptation. In particular, latitudinal clines in phenotypes have been studied in a number of Drosophila species. Some environmental conditions along latitudinal clines-for example, temperature-also vary along altitudinal clines, but these have been studied infrequently and it remains unclear whether these environmental factors are similar enough for convergence or parallel evolution. Most clinal studies in Drosophila have dealt exclusively with univariate phenotypes, allowing for the detection of clinal relationships, but not for estimating the directions of covariation between them. We measured variation in wing shape and size in D. melanogaster derived from populations at varying altitudes and latitudes across sub-Saharan Africa. Geometric morphometrics allows us to compare shape changes associated with latitude and altitude, and manipulating rearing temperature allows us to quantify the extent to which thermal plasticity recapitulates clinal effects. Comparing effect vectors demonstrates that altitude, latitude, and temperature are only partly associated, and that the altitudinal shape effect may differ between Eastern and Western Africa. Our results suggest that selection responsible for these phenotypic clines may be more complex than just thermal adaptation.


Assuntos
Drosophila melanogaster/genética , Variação Genética , Asas de Animais/anatomia & histologia , Adaptação Biológica/genética , África , Altitude , Animais , Drosophila melanogaster/anatomia & histologia , Temperatura Alta , Tamanho do Órgão/genética , Fenótipo , População/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...