Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; : 173364, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38777068

RESUMO

Over the recent decades, technological advancements have led to a rise in the use of so-called technology-critical elements (TCEs). Environmental monitoring of TCEs forms the base to assess whether this leads to increased anthropogenic release and to public health implications. This study employs an exploratory approach to investigate the distribution of the TCEs Li, Be, V, Ga, Ge, Nb, Sb, Te, Ta, Tl, Bi and the REYs (rare-earth elements including yttrium) in urban aerosol in the city of Vienna, Austria. Leaf samples (n = 292) from 8 plant species and two green facades and water samples (n = 18) from the Wienfluss river were examined using inductively coupled plasma tandem mass spectrometry (ICP-MS/MS). Surface dust contributions were assessed by washing one replicate of each leaf sample and analysing the washing water (n = 146). The impacts of sampling month, plant species and storey level on elemental distribution were assessed by statistical tools and generative deep neural network modelling. Higher TCE levels, including Li, V, Ga, Ge, Tl, Bi, and the REYs, were found in the winter months, likely due to the use of de-icing materials and fossil fuel combustion. A. millefolium and S. heufleriana displayed the highest levels of Li and Ge, respectively. In addition, increased elemental accumulation at lower storeys was observed, including Be, Sb, Bi and the REYs, indicating greater atmospheric dust deposition and recirculation closer to ground level. The results suggest a broad association of TCE levels with urban dust. This study enhances the current understanding of TCE distribution in urban settings and underscores the importance of their inclusion in pollution monitoring. It highlights the complex interplay of human activities, urban infrastructure, and environmental factors, offering valuable insights for managing urban environmental health risks and underlining the need for comprehensive urban ecosystem studies.

2.
Sci Total Environ ; 849: 157842, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35940261

RESUMO

Vertical greening systems (VGS) are implemented in the building envelope to address challenges such as the urban heat island effect, energy reduction, air purification, support of biodiversity and recently greywater treatment (wastewater without urine and faeces) for reuse purposes. In this context, providing and using treated wastewater is a crucial point, as generally VGS are irrigated with tap water and thereby increase urban water depletion and pollution. In this study, we evaluate the multifunctionality of a pot-based VGS irrigated with untreated greywater and capable, as well, of acting as a greywater treatment system. The full-scale experimental system uses a low-tech irrigation technique and was investigated for different irrigation water volumes to identify the needed water demand to maximize local cooling by evapotranspiration and suitable plants for the different water conditions and water types. Plant development and greywater treatment capabilities were monitored from April 2020 until September 2021. Based on the highest irrigation volume, a local air temperature reduction of up to 3.4 °C was measured. The removal efficiencies for treating greywater were COD 80 %, TOC 74 %, TNb 70 %, NH4-N 81 % and Turbidity 79 %, respectively, and showed a decrease in the second year of operation. Therefore, the results support the need to develop more robust systems, since up to now mainly short-term experiments have been reported in literature.


Assuntos
Temperatura Alta , Águas Residuárias , Cidades , Desenvolvimento Vegetal , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Água
3.
Sci Total Environ ; 836: 155745, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-35525344

RESUMO

Water is the key resource in fulfilling the cooling function of plants in urban environments and needs to be supplied reliably and adequately, especially during dry periods. To avoid an unsustainable use of high-quality drinking water for irrigation, the reuse of greywater should be implemented for Green Infrastructure irrigation in the sense of the circular economy. In this study, the influence of greywater irrigation on vitality of two trees species, Tilia cordata and Acer pseudoplatanus, was determined by investigating the effect of irrigation with raw or treated greywater in comparison to municipal tap water. Plant growth parameters were measured, including leaf area, number of leaves, average leaf area and annual growth. In addition, the relative chlorophyll content was determined and image analysis was used to identify vital and necrotic leaf parts. While treatment did not affect growth after one growing season A. pseudoplatanus had significantly higher leaf necrosis (34.8%) when irrigated with raw greywater compared to treated greywater (15.5%) and tap water (5.8%). Relative chlorophyll content of T. cordata irrigated with tap water decreased over time until it was significantly lower (28.5) then the greywater treatments (34.5 and 35). Image analysis of leaves to quantify necrosis proved to be a sensitive method to quantify plant health and showed negative effects earlier than an analysis of growth. Anionic surfactants and electrical conductivity had a significant influence on plant vitality. Therefore, plant selection should take these parameters into account, when planning green infrastructure irrigated with greywater.


Assuntos
Acer , Tilia , Clorofila , Necrose , Folhas de Planta , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...