Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Intervalo de ano de publicação
2.
Nat Ecol Evol ; 8(5): 901-911, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467713

RESUMO

Amazonia's floodplain system is the largest and most biodiverse on Earth. Although forests are crucial to the ecological integrity of floodplains, our understanding of their species composition and how this may differ from surrounding forest types is still far too limited, particularly as changing inundation regimes begin to reshape floodplain tree communities and the critical ecosystem functions they underpin. Here we address this gap by taking a spatially explicit look at Amazonia-wide patterns of tree-species turnover and ecological specialization of the region's floodplain forests. We show that the majority of Amazonian tree species can inhabit floodplains, and about a sixth of Amazonian tree diversity is ecologically specialized on floodplains. The degree of specialization in floodplain communities is driven by regional flood patterns, with the most compositionally differentiated floodplain forests located centrally within the fluvial network and contingent on the most extraordinary flood magnitudes regionally. Our results provide a spatially explicit view of ecological specialization of floodplain forest communities and expose the need for whole-basin hydrological integrity to protect the Amazon's tree diversity and its function.


Assuntos
Biodiversidade , Inundações , Rios , Árvores , Brasil , Florestas
3.
Sci Rep ; 14(1): 2080, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267489

RESUMO

The presence of Andean plant genera in moist forests of the Brazilian Atlantic Coast has been historically hypothesized as the result of cross-continental migrations starting at the eastern Andean flanks. Here we test hypotheses of former connections between the Atlantic and Andean forests by examining distribution patterns of selected cool and moist-adapted plant arboreal taxa present in 54 South American pollen records of the Last Glacial Maximum (LGM), ca. 19-23 cal ka, known to occur in both plant domains. Pollen taxa studied include Araucaria, Drimys, Hedyosmum, Ilex, Myrsine, Podocarpus, Symplocos, Weinmannia, Myrtaceae, Ericaceae and Arecaceae. Past connectivity patterns between these two neotropical regions as well as individual ecological niches during the LGM were explored by cluster analysis of fossil assemblages and modern plant distributions. Additionally, we examined the ecological niche of 137 plant species with shared distributions between the Andes and coastal Brazil. Our results revealed five complex connectivity patterns for South American vegetation linking Andean, Amazonian and Atlantic Forests and one disjunction distribution in southern Chile. This study also provides a better understanding of vegetation cover on the large and shallow South American continental shelf that was exposed due to a global sea level drop.


Assuntos
Ecossistema , Florestas , Brasil , Chile , Árvores
4.
Commun Biol ; 6(1): 1130, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938615

RESUMO

Using 2.046 botanically-inventoried tree plots across the largest tropical forest on Earth, we mapped tree species-diversity and tree species-richness at 0.1-degree resolution, and investigated drivers for diversity and richness. Using only location, stratified by forest type, as predictor, our spatial model, to the best of our knowledge, provides the most accurate map of tree diversity in Amazonia to date, explaining approximately 70% of the tree diversity and species-richness. Large soil-forest combinations determine a significant percentage of the variation in tree species-richness and tree alpha-diversity in Amazonian forest-plots. We suggest that the size and fragmentation of these systems drive their large-scale diversity patterns and hence local diversity. A model not using location but cumulative water deficit, tree density, and temperature seasonality explains 47% of the tree species-richness in the terra-firme forest in Amazonia. Over large areas across Amazonia, residuals of this relationship are small and poorly spatially structured, suggesting that much of the residual variation may be local. The Guyana Shield area has consistently negative residuals, showing that this area has lower tree species-richness than expected by our models. We provide extensive plot meta-data, including tree density, tree alpha-diversity and tree species-richness results and gridded maps at 0.1-degree resolution.


Assuntos
RNA Longo não Codificante , Árvores , Florestas , Solo , Temperatura
5.
Science ; 382(6666): 103-109, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37797008

RESUMO

Indigenous societies are known to have occupied the Amazon basin for more than 12,000 years, but the scale of their influence on Amazonian forests remains uncertain. We report the discovery, using LIDAR (light detection and ranging) information from across the basin, of 24 previously undetected pre-Columbian earthworks beneath the forest canopy. Modeled distribution and abundance of large-scale archaeological sites across Amazonia suggest that between 10,272 and 23,648 sites remain to be discovered and that most will be found in the southwest. We also identified 53 domesticated tree species significantly associated with earthwork occurrence probability, likely suggesting past management practices. Closed-canopy forests across Amazonia are likely to contain thousands of undiscovered archaeological sites around which pre-Columbian societies actively modified forests, a discovery that opens opportunities for better understanding the magnitude of ancient human influence on Amazonia and its current state.


Assuntos
Arqueologia , Florestas , Humanos , Brasil
6.
Sci Rep ; 13(1): 2859, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36801913

RESUMO

In a time of rapid global change, the question of what determines patterns in species abundance distribution remains a priority for understanding the complex dynamics of ecosystems. The constrained maximization of information entropy provides a framework for the understanding of such complex systems dynamics by a quantitative analysis of important constraints via predictions using least biased probability distributions. We apply it to over two thousand hectares of Amazonian tree inventories across seven forest types and thirteen functional traits, representing major global axes of plant strategies. Results show that constraints formed by regional relative abundances of genera explain eight times more of local relative abundances than constraints based on directional selection for specific functional traits, although the latter does show clear signals of environmental dependency. These results provide a quantitative insight by inference from large-scale data using cross-disciplinary methods, furthering our understanding of ecological dynamics.


Assuntos
Biodiversidade , Ecossistema , Entropia , Florestas , Plantas , Ecologia , Clima Tropical
7.
PhytoKeys ; 194: 33-46, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35586327

RESUMO

We report the rediscovery of the Critically Endangered cloud forest herb Gasteranthusextinctus, not seen since 1985. In 2019 and 2021, G.extinctus was recorded at five sites in the western foothills of the Ecuadorian Andes, 4-25 km from the type locality at the celebrated Centinela ridge. We describe the species' distribution, abundance, habitat and conservation status and offer recommendations for further research and conservation efforts focused on G.extinctus and the small, disjunct forest remnants it occupies.

8.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34580207

RESUMO

This paper addresses an important debate in Amazonian studies; namely, the scale, intensity, and nature of human modification of the forests in prehistory. Phytolith and charcoal analysis of terrestrial soils underneath mature tierra firme (nonflooded, nonriverine) forests in the remote Medio Putumayo-Algodón watersheds, northeastern Peru, provide a vegetation and fire history spanning at least the past 5,000 y. A tree inventory carried out in the region enables calibration of ancient phytolith records with standing vegetation and estimates of palm species densities on the landscape through time. Phytolith records show no evidence for forest clearing or agriculture with major annual seed and root crops. Frequencies of important economic palms such as Oenocarpus, Euterpe, Bactris, and Astrocaryum spp., some of which contain hyperdominant species in the modern flora, do not increase through prehistoric time. This indicates pre-Columbian occupations, if documented in the region with future research, did not significantly increase the abundance of those species through management or cultivation. Phytoliths from other arboreal and woody species similarly reflect a stable forest structure and diversity throughout the records. Charcoal 14C dates evidence local forest burning between ca. 2,800 and 1,400 y ago. Our data support previous research indicating that considerable areas of some Amazonian tierra firme forests were not significantly impacted by human activities during the prehistoric era. Rather, it appears that over the last 5,000 y, indigenous populations in this region coexisted with, and helped maintain, large expanses of relatively unmodified forest, as they continue to do today.


Assuntos
Incêndios , Florestas , Efeitos Antropogênicos , Peru
9.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34330699

RESUMO

Meeting international commitments to protect 17% of terrestrial ecosystems worldwide will require >3 million square kilometers of new protected areas and strategies to create those areas in a way that respects local communities and land use. In 2000-2016, biological and social scientists worked to increase the protected proportion of Peru's largest department via 14 interdisciplinary inventories covering >9 million hectares of this megadiverse corner of the Amazon basin. In each landscape, the strategy was the same: convene diverse partners, identify biological and sociocultural assets, document residents' use of natural resources, and tailor the findings to the needs of decision-makers. Nine of the 14 landscapes have since been protected (5.7 million hectares of new protected areas), contributing to a quadrupling of conservation coverage in Loreto (from 6 to 23%). We outline the methods and enabling conditions most crucial for successfully applying similar campaigns elsewhere on Earth.

10.
Nat Plants ; 7(8): 1010-1014, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34326529

RESUMO

Field photographs of plant species are crucial for research and conservation, but the lack of a centralized database makes them difficult to locate. We surveyed 25 online databases of field photographs and found that they harboured only about 53% of the approximately 125,000 vascular plant species of the Americas. These results reflect the urgent need for a centralized database that can both integrate and complete the photographic record of the world's flora.


Assuntos
Biodiversidade , Bases de Dados Factuais/estatística & dados numéricos , Geografia/estatística & dados numéricos , Fotografação/estatística & dados numéricos , Plantas , América
11.
Oecologia ; 196(4): 1119-1137, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34324078

RESUMO

Environmental and dispersal filters are key determinants of species distributions of Amazonian tree communities. However, a comprehensive analysis of the role of environmental and dispersal filters is needed to understand the ecological and evolutionary processes that drive phylogenetic and taxonomic turnover of Amazonian tree communities. We compare measures of taxonomic and phylogenetic beta diversity in 41 one-hectare plots to test the relative importance of climate, soils, geology, geomorphology, pure spatial variables and the spatial variation of environmental drivers of phylogenetic and taxonomic turnover in Ecuadorian Amazon tree communities. We found low phylogenetic and high taxonomic turnover with respect to environmental and dispersal filters. In addition, our results suggest that climate is a significantly better predictor of phylogenetic turnover and taxonomic turnover than geomorphology and soils at all spatial scales. The influence of climate as a predictor of phylogenetic turnover was stronger at broader spatial scales (50 km2) whereas geomorphology and soils appear to be better predictors of taxonomic turnover at mid (5 km2) and fine spatial scales (0.5 km2) but a weak predictor of phylogenetic turnover at broad spatial scales. We also found that the combined effect of geomorphology and soils was significantly higher for taxonomic turnover at all spatial scales but not for phylogenetic turnover at large spatial scales. Geographic distances as proxy of dispersal limitation was a better predictor of phylogenetic turnover at distances of 50 < 500 km. Our findings suggest that climatic variation at regional scales can better predict phylogenetic and taxonomic turnover than geomorphology and soils.


Assuntos
Biodiversidade , Filogenia
12.
Sci Rep ; 10(1): 10130, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576943

RESUMO

Amazonian forests are extraordinarily diverse, but the estimated species richness is very much debated. Here, we apply an ensemble of parametric estimators and a novel technique that includes conspecific spatial aggregation to an extended database of forest plots with up-to-date taxonomy. We show that the species abundance distribution of Amazonia is best approximated by a logseries with aggregated individuals, where aggregation increases with rarity. By averaging several methods to estimate total richness, we confirm that over 15,000 tree species are expected to occur in Amazonia. We also show that using ten times the number of plots would result in an increase to just ~50% of those 15,000 estimated species. To get a more complete sample of all tree species, rigorous field campaigns may be needed but the number of trees in Amazonia will remain an estimate for years to come.


Assuntos
Biodiversidade , Classificação/métodos , Florestas , Rios , Árvores/classificação , Brasil
13.
Ecology ; 101(7): e03052, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32239762

RESUMO

Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.


Assuntos
Florestas , Madeira , África , Brasil , Ecossistema , Clima Tropical
14.
Sci Rep ; 9(1): 13822, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31554920

RESUMO

Tropical forests are known for their high diversity. Yet, forest patches do occur in the tropics where a single tree species is dominant. Such "monodominant" forests are known from all of the main tropical regions. For Amazonia, we sampled the occurrence of monodominance in a massive, basin-wide database of forest-inventory plots from the Amazon Tree Diversity Network (ATDN). Utilizing a simple defining metric of at least half of the trees ≥ 10 cm diameter belonging to one species, we found only a few occurrences of monodominance in Amazonia, and the phenomenon was not significantly linked to previously hypothesized life history traits such wood density, seed mass, ectomycorrhizal associations, or Rhizobium nodulation. In our analysis, coppicing (the formation of sprouts at the base of the tree or on roots) was the only trait significantly linked to monodominance. While at specific locales coppicing or ectomycorrhizal associations may confer a considerable advantage to a tree species and lead to its monodominance, very few species have these traits. Mining of the ATDN dataset suggests that monodominance is quite rare in Amazonia, and may be linked primarily to edaphic factors.

15.
Ecology ; 100(12): e02894, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31531983

RESUMO

We compiled a data set for all tree species collected to date in lowland Amazonian Ecuador in order to determine the number of tree species in the region. This data set has been extensively verified by taxonomists and is the most comprehensive attempt to evaluate the tree diversity in one of the richest species regions of the Amazon. We used four main sources of data: mounted specimens deposited in Ecuadorian herbaria only, specimen records of a large-scale 1-hectare-plot network (60 plots in total), data from the Missouri Botanical Garden Tropicos® database (MO), and literature sources. The list of 2,296 tree species names we provide in this data set is based on 47,486 herbarium records deposited in the following herbaria: Alfredo Paredes Herbarium (QAP), Catholic University Herbarium (QCA), Herbario Nacional del Ecuador (QCNE), Missouri Botanical Garden (MO), and records from an extensive sampling of 29,768 individuals with diameter at breast height (dbh) ≥10 cm recorded in our plot network. We also provide data for the relative abundance of species, geographic coordinates of specimens deposited in major herbaria around the world, whether the species is native or endemic, current hypothesis of geographic distribution, representative collections, and IUCN threat category for every species recorded to date in Amazonian Ecuador. These data are described in Metadata S1 and can be used for macroecological, evolutionary, or taxonomic studies. There are no copyright restrictions; data are freely available for noncommercial scientific use (CC BY 3.0). Please see Metadata S1 (Class III, Section B.1: Proprietary restrictions) for additional information on usage.

16.
Rev. peru. biol. (Impr.) ; 26(3)ago. 2019.
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1508852

RESUMO

Durante el período 2000 - 2016, se llevaron a cabo 15 inventarios biológicos en áreas remotas en el pie de monte andino y el llano amazónico del Perú. En estos inventarios, 27 botánicos colectaron un total de 9397 especímenes de plantas vasculares fértiles. Hasta finales del 2017, más de la mitad de estos especímenes se han identificado a nivel de especie, de los cuales 64 especies y 2 géneros (Dicorynia y Monopteryx) representan nuevos registros para la flora del Perú. Si esta tasa de novedades se mantiene, el número de registros nuevos en el material de los inventarios podría aumentar, lo cual nos indica que aún queda mucho por descubrir en la flora andino-amazónica del Perú.


Between 2000 and 2016 we carried out 15 rapid biological inventories in remote areas of the Andean foothills and Amazon basin in Peru. During these inventories, 27 botanists collected 9397 fertile vascular plant specimens. By the end of 2017, more than half of these specimens had been identified to species. Of the 2303 species identified to date, 64 species and 2 genera (Dicorynia and Monopteryx) are new records for the flora of Peru. If this rate of discovery proves typical, the number of new records for Peru in the rapid inventory material could increase, which indicates that there is still much to discover in the Peruvian flora.

17.
Ecol Lett ; 22(7): 1072-1082, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30938488

RESUMO

Neutral models are often used as null models, testing the relative importance of niche versus neutral processes in shaping diversity. Most versions, however, focus only on regional scale predictions and neglect local level contributions. Recently, a new formulation of spatial neutral theory was published showing an incompatibility between regional and local scale fits where especially the number of rare species was dramatically under-predicted. Using a forward in time semi-spatially explicit neutral model and a unique large-scale Amazonian tree inventory data set, we show that neutral theory not only underestimates the number of rare species but also fails in predicting the excessive dominance of species on both regional and local levels. We show that although there are clear relationships between species composition, spatial and environmental distances, there is also a clear differentiation between species able to attain dominance with and without restriction to specific habitats. We conclude therefore that the apparent dominance of these species is real, and that their excessive abundance can be attributed to fitness differences in different ways, a clear violation of the ecological equivalence assumption of neutral theory.


Assuntos
Biodiversidade , Ecologia , Árvores , Ecossistema , Modelos Biológicos , Especificidade da Espécie
18.
Sci Rep ; 9(1): 3501, 2019 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-30837572

RESUMO

To provide an empirical foundation for estimates of the Amazonian tree diversity, we recently published a checklist of 11,675 tree species recorded to date in the region (ter Steege H, et al. (2016) The discovery of the Amazonian tree flora with an updated checklist of all known tree taxa. Scientific Reports 6:29549). From this total of plant records compiled from public databases and literature, widely used in studies on the Amazonian plant diversity, only 6,727 tree species belong to the first taxonomically-vetted checklist published for the region (Cardoso D, et al. (2017) Amazon plant diversity revealed by a taxonomically verified species list. PNAS 114:10695-10700). The striking difference in these two numbers spurred us to evaluate both lists, in order to release an improved Amazonian tree list; to discuss species inclusion criteria; and to highlight the ecological importance of verifying the occurrence of "non-Amazonian" trees in the region through the localization and identification of specimens. A number of species in the 2016 checklist that are not trees, non-native, synonyms, or misspellings were removed and corresponded to about 23% of the names. Species not included in the taxonomically-vetted checklist but verified by taxonomists to occur in Amazonia as trees were retained. Further, the inclusion of recently recorded/new species (after 2016), and recent taxonomic changes added up to an updated checklist including 10,071 species recorded for the Amazon region and shows the dynamic nature of establishing an authoritative checklist of Amazonian tree species. Completing and improving this list is a long-term, high-value commitment that will require a collaborative approach involving ecologists, taxonomists, and practitioners.


Assuntos
Biodiversidade , Árvores/classificação , Brasil , Floresta Úmida
19.
Ecology ; 100(4): e02636, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30693479

RESUMO

The forests of western Amazonia are among the most diverse tree communities on Earth, yet this exceptional diversity is distributed highly unevenly within and among communities. In particular, a small number of dominant species account for the majority of individuals, whereas the large majority of species are locally and regionally extremely scarce. By definition, dominant species contribute little to local species richness (alpha diversity), yet the importance of dominant species in structuring patterns of spatial floristic turnover (beta diversity) has not been investigated. Here, using a network of 207 forest inventory plots, we explore the role of dominant species in determining regional patterns of beta diversity (community-level floristic turnover and distance-decay relationships) across a range of habitat types in northern lowland Peru. Of the 2,031 recorded species in our data set, only 99 of them accounted for 50% of individuals. Using these 99 species, it was possible to reconstruct the overall features of regional beta diversity patterns, including the location and dispersion of habitat types in multivariate space, and distance-decay relationships. In fact, our analysis demonstrated that regional patterns of beta diversity were better maintained by the 99 dominant species than by the 1,932 others, whether quantified using species-abundance data or species presence-absence data. Our results reveal that dominant species are normally common only in a single forest type. Therefore, dominant species play a key role in structuring western Amazonian tree communities, which in turn has important implications, both practically for designing effective protected areas, and more generally for understanding the determinants of beta diversity patterns.


Assuntos
Biodiversidade , Árvores , Ecossistema , Florestas , Peru , Clima Tropical
20.
Sci Rep ; 8(1): 1003, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29343741

RESUMO

Species distribution models (SDMs) are widely used in ecology and conservation. Presence-only SDMs such as MaxEnt frequently use natural history collections (NHCs) as occurrence data, given their huge numbers and accessibility. NHCs are often spatially biased which may generate inaccuracies in SDMs. Here, we test how the distribution of NHCs and MaxEnt predictions relates to a spatial abundance model, based on a large plot dataset for Amazonian tree species, using inverse distance weighting (IDW). We also propose a new pipeline to deal with inconsistencies in NHCs and to limit the area of occupancy of the species. We found a significant but weak positive relationship between the distribution of NHCs and IDW for 66% of the species. The relationship between SDMs and IDW was also significant but weakly positive for 95% of the species, and sensitivity for both analyses was high. Furthermore, the pipeline removed half of the NHCs records. Presence-only SDM applications should consider this limitation, especially for large biodiversity assessments projects, when they are automatically generated without subsequent checking. Our pipeline provides a conservative estimate of a species' area of occupancy, within an area slightly larger than its extent of occurrence, compatible to e.g. IUCN red list assessments.


Assuntos
Conservação dos Recursos Naturais/estatística & dados numéricos , Modelos Estatísticos , Dispersão Vegetal/fisiologia , Árvores/fisiologia , Brasil , Chrysobalanaceae/fisiologia , Fabaceae/fisiologia , Humanos , Polygonaceae/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...