Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37047950

RESUMO

Artificial intelligence (AI) has revolutionized numerous industries, including medicine. In recent years, the integration of AI into medical practices has shown great promise in enhancing the accuracy and efficiency of diagnosing diseases, predicting patient outcomes, and personalizing treatment plans. This paper aims at the exploration of the AI-based medicine research using network approach and analysis of existing trends based on PubMed. Our findings are based on the results of PubMed search queries and analysis of the number of papers obtained by the different search queries. Our goal is to explore how are the AI-based methods used in healthcare research, which approaches and techniques are the most popular, and to discuss the potential reasoning behind the obtained results. Using analysis of the co-occurrence network constructed using VOSviewer software, we detected the main clusters of interest in AI-based healthcare research. Then, we proceeded with the thorough analysis of publication activity in various categories of medical AI research, including research on different AI-based methods applied to different types of medical data. We analyzed the results of query processing in the PubMed database over the past 5 years obtained via a specifically designed strategy for generating search queries based on the thorough selection of keywords from different categories of interest. We provide a comprehensive analysis of existing applications of AI-based methods to medical data of different modalities, including the context of various medical fields and specific diseases that carry the greatest danger to the human population.


Assuntos
Pesquisa Biomédica , Medicina , Humanos , Inteligência Artificial , Pesquisa sobre Serviços de Saúde , Software
2.
Sensors (Basel) ; 22(7)2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35408153

RESUMO

Large-scale functional connectivity is an important indicator of the brain's normal functioning. The abnormalities in the connectivity pattern can be used as a diagnostic tool to detect various neurological disorders. The present paper describes the functional connectivity assessment based on artificial intelligence to reveal age-related changes in neural response in a simple motor execution task. Twenty subjects of two age groups performed repetitive motor tasks on command, while the whole-scalp EEG was recorded. We applied the model based on the feed-forward multilayer perceptron to detect functional relationships between five groups of sensors located over the frontal, parietal, left, right, and middle motor cortex. Functional dependence was evaluated with the predicted and original time series coefficient of determination. Then, we applied statistical analysis to highlight the significant features of the functional connectivity network assessed by our model. Our findings revealed the connectivity pattern is consistent with modern ideas of the healthy aging effect on neural activation. Elderly adults demonstrate a pronounced activation of the whole-brain theta-band network and decreased activation of frontal-parietal and motor areas of the mu-band. Between-subject analysis revealed a strengthening of inter-areal task-relevant links in elderly adults. These findings can be interpreted as an increased cognitive demand in elderly adults to perform simple motor tasks with the dominant hand, induced by age-related working memory decline.


Assuntos
Inteligência Artificial , Córtex Motor , Adulto , Idoso , Encéfalo/fisiologia , Mapeamento Encefálico , Eletroencefalografia , Humanos , Imageamento por Ressonância Magnética , Córtex Motor/fisiologia , Redes Neurais de Computação
3.
Sensors (Basel) ; 20(20)2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33076556

RESUMO

The problem of revealing age-related distinctions in multichannel electroencephalograms (EEGs) during the execution of motor tasks in young and elderly adults is addressed herein. Based on the detrended fluctuation analysis (DFA), differences in long-range correlations are considered, emphasizing changes in the scaling exponent α. Stronger responses in elderly subjects are confirmed, including the range and rate of increase in α. Unlike elderly subjects, young adults demonstrated about 2.5 times more pronounced differences between motor task responses with the dominant and non-dominant hand. Knowledge of age-related changes in brain electrical activity is important for understanding consequences of healthy aging and distinguishing them from pathological changes associated with brain diseases. Besides diagnosing age-related effects, the potential of DFA can also be used in the field of brain-computer interfaces.


Assuntos
Eletroencefalografia , Idoso , Humanos
4.
PLoS One ; 15(9): e0233942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32937652

RESUMO

Age-related changes in the human brain functioning crucially affect the motor system, causing increased reaction time, low ability to control and execute movements, difficulties in learning new motor skills. The lifestyle and lowered daily activity of elderly adults, along with the deficit of motor and cognitive brain functions, might lead to the developed ambidexterity, i.e., the loss of dominant limb advances. Despite the broad knowledge about the changes in cortical activity directly related to the motor execution, less is known about age-related differences in the motor initiation phase. We hypothesize that the latter strongly influences the behavioral characteristics, such as reaction time, the accuracy of motor performance, etc. Here, we compare the neuronal processes underlying the motor initiation phase preceding fine motor task execution between elderly and young subjects. Based on the results of the whole-scalp sensor-level electroencephalography (EEG) analysis, we demonstrate that the age-related slowing down in the motor initiation before the dominant hand movements is accompanied by the increased theta activation within sensorimotor area and reconfiguration of the theta-band functional connectivity in elderly adults.


Assuntos
Envelhecimento/fisiologia , Cognição/fisiologia , Atividade Motora , Desempenho Psicomotor , Tempo de Reação , Adulto , Idoso , Mapeamento Encefálico , Eletroencefalografia , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Sensório-Motor/fisiologia , Ritmo Teta , Adulto Jovem
5.
Sci Rep ; 9(1): 9838, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285468

RESUMO

The understanding of neurophysiological mechanisms responsible for motor imagery (MI) is essential for the development of brain-computer interfaces (BCI) and bioprosthetics. Our magnetoencephalographic (MEG) experiments with voluntary participants confirm the existence of two types of motor imagery, kinesthetic imagery (KI) and visual imagery (VI), distinguished by activation and inhibition of different brain areas in motor-related α- and ß-frequency regions. Although the brain activity corresponding to MI is usually observed in specially trained subjects or athletes, we show that it is also possible to identify particular features of MI in untrained subjects. Similar to real movement, KI implies muscular sensation when performing an imaginary moving action that leads to event-related desynchronization (ERD) of motor-associated brain rhythms. By contrast, VI refers to visualization of the corresponding action that results in event-related synchronization (ERS) of α- and ß-wave activity. A notable difference between KI and VI groups occurs in the frontal brain area. In particular, the analysis of evoked responses shows that in all KI subjects the activity in the frontal cortex is suppressed during MI, while in the VI subjects the frontal cortex is always active. The accuracy in classification of left-arm and right-arm MI using artificial intelligence is similar for KI and VI. Since untrained subjects usually demonstrate the VI imagery mode, the possibility to increase the accuracy for VI is in demand for BCIs. The application of artificial neural networks allows us to classify MI in raising right and left arms with average accuracy of 70% for both KI and VI using appropriate filtration of input signals. The same average accuracy is achieved by optimizing MEG channels and reducing their number to only 13.


Assuntos
Encéfalo/fisiologia , Cinestesia/fisiologia , Magnetoencefalografia/métodos , Adulto , Inteligência Artificial , Interfaces Cérebro-Computador , Feminino , Humanos , Imagens, Psicoterapia , Masculino , Redes Neurais de Computação , Estimulação Luminosa , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...