Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Cell Biochem Funct ; 42(3): e4012, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38584583

RESUMO

Osteoarthritis (OA) is characterised by the deterioration of cartilage in the joints and pain. We hypothesise that semaphorin-3A (sema-3A), a chemorepellent for sensory nerves, plays a role in joint degradation and pain. We used the mechanical joint loading (MJL) model of OA to investigate sema-3A expression in the joint and examine its association with the development of OA and pain. We also analyse its effect on chondrocyte differentiation using the ATDC5 cell line. We demonstrate that sema-3A is present in most tissues in the healthy joint and its expression increases in highly innervated tissues, such as cruciate ligaments, synovial lining and subchondral bone, in loaded compared to nonloaded control joints. In contrast, sema-3A expression in cartilage was decreased in the severe OA induced by the application of high loads. There was a significant increase in circulating sema-3A, 6 weeks after MJL compared to the nonloaded mice. mRNA for sema-3A and its receptor Plexin A1 were upregulated in the dorsal root ganglia of mice submitted to MJL. These increases were supressed by zoledronate, an inhibitor of bone pain. Sema-3A was expressed at all stages of Chondrocyte maturation and, when added exogenously, stimulated expression of markers of chondrocyte differentiation. This indicates that sema-3A could affect joint tissues distinctively during the development of OA. In highly innervated joint tissues, sema-3A could control innervation and/or induce pain-associated neuronal changes. In cartilage, sema-3A could favour its degeneration by modifying chondrocyte differentiation.


Assuntos
Osso e Ossos , Semaforina-3A , Animais , Camundongos , Osso e Ossos/metabolismo , Diferenciação Celular , Linhagem Celular , Dor , Semaforina-3A/genética , Semaforina-3A/metabolismo
2.
Cells ; 13(2)2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38247857

RESUMO

Sulforaphane, the native but unstable form of SFX-01, is an antioxidant that activates the NRF2 and inhibits the NF-KB pathways to achieve its actions. Resolving the mechanism(s) by which SFX-01 serves to control the various osteoclastogenic stages may expose pathways that could be explored for therapeutic use. Here we seek to identify the stage of osteoclastogenesis targeted by SFX-01 and explore whether, like SFN, it exerts its actions via the NRF2 and NF-KB pathways. Osteoclasts generated from the bone marrow (BM) of mice were cultured with SFX-01 at different timepoints to examine each phase of osteoclastogenesis separately. This showed that SFX-01 exerted actions throughout the process of osteoclastogenesis, but had its largest effects in the early osteoclast precursor differentiation stage. Thus, treatment with SFX-01 for the duration of culture, for the initial 3 days differentiation or for as little as the first 24 h was sufficient for effective inhibition. This aligned with data suggesting that SFX-01 reduced DC-STAMP levels, osteoclast nuclear number and modified cytoskeletal architecture. Pharmacological regulation of the NRF2 pathways, via selective inhibitors/activators, supported the anti-osteoclastogenic roles of an SFX-01-mediated by NRF2 activation, as well as the need for tight NF-KB pathway regulation in osteoclast formation/function.


Assuntos
Isotiocianatos , Osteoclastos , Osteogênese , Sulfóxidos , Animais , Camundongos , Fator 2 Relacionado a NF-E2 , NF-kappa B
3.
iScience ; 26(7): 107225, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37485359

RESUMO

Collagen XII, belonging to the fibril-associated collagens, is a homotrimeric secreted extracellular matrix (ECM) protein encoded by the COL12A1 gene. Mutations in the human COL12A1 gene cause an Ehlers-Danlos/myopathy overlap syndrome leading to skeletal abnormalities and muscle weakness. Here, we studied the role of collagen XII in joint pathophysiology by analyzing collagen XII deficient mice and human patients. We found that collagen XII is widely expressed across multiple connective tissue of the developing joint. Lack of collagen XII in mice destabilizes tendons and the femoral trochlear groove to induce patellar subluxation in the patellofemoral joint. These changes are associated with an ECM damage response in tendon and secondary quadriceps muscle degeneration. Moreover, patellar subluxation was also identified as a clinical feature of human patients with collagen XII deficiency. The results provide an explanation for joint hyperlaxity in mice and human patients with collagen XII deficiency.

4.
Adv Genet (Hoboken) ; 4(2): 2200024, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37288167

RESUMO

Sequencing the human genome empowers translational medicine, facilitating transcriptome-wide molecular diagnosis, pathway biology, and drug repositioning. Initially, microarrays are used to study the bulk transcriptome; but now short-read RNA sequencing (RNA-seq) predominates. Positioned as a superior technology, that makes the discovery of novel transcripts routine, most RNA-seq analyses are in fact modeled on the known transcriptome. Limitations of the RNA-seq methodology have emerged, while the design of, and the analysis strategies applied to, arrays have matured. An equitable comparison between these technologies is provided, highlighting advantages that modern arrays hold over RNA-seq. Array protocols more accurately quantify constitutively expressed protein coding genes across tissue replicates, and are more reliable for studying lower expressed genes. Arrays reveal long noncoding RNAs (lncRNA) are neither sparsely nor lower expressed than protein coding genes. Heterogeneous coverage of constitutively expressed genes observed with RNA-seq, undermines the validity and reproducibility of pathway analyses. The factors driving these observations, many of which are relevant to long-read or single-cell sequencing are discussed. As proposed herein, a reappreciation of bulk transcriptomic methods is required, including wider use of the modern high-density array data-to urgently revise existing anatomical RNA reference atlases and assist with more accurate study of lncRNAs.

5.
Hum Mol Genet ; 32(17): 2681-2692, 2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37364051

RESUMO

Orofacial clefts, including cleft lip and palate (CL/P) and neural tube defects (NTDs) are among the most common congenital anomalies, but knowledge of the genetic basis of these conditions remains incomplete. The extent to which genetic risk factors are shared between CL/P, NTDs and related anomalies is also unclear. While identification of causative genes has largely focused on coding and loss of function mutations, it is hypothesized that regulatory mutations account for a portion of the unidentified heritability. We found that excess expression of Grainyhead-like 2 (Grhl2) causes not only spinal NTDs in Axial defects (Axd) mice but also multiple additional defects affecting the cranial region. These include orofacial clefts comprising midline cleft lip and palate and abnormalities of the craniofacial bones and frontal and/or basal encephalocele, in which brain tissue herniates through the cranium or into the nasal cavity. To investigate the causative mutation in the Grhl2Axd strain, whole genome sequencing identified an approximately 4 kb LTR retrotransposon insertion that disrupts the non-coding regulatory region, lying approximately 300 base pairs upstream of the 5' UTR. This insertion also lies within a predicted long non-coding RNA, oriented on the reverse strand, which like Grhl2 is over-expressed in Axd (Grhl2Axd) homozygous mutant embryos. Initial analysis of the GRHL2 upstream region in individuals with NTDs or cleft palate revealed rare or novel variants in a small number of cases. We hypothesize that mutations affecting the regulation of GRHL2 may contribute to craniofacial anomalies and NTDs in humans.


Assuntos
Anormalidades Múltiplas , Fenda Labial , Fissura Palatina , Defeitos do Tubo Neural , Disrafismo Espinal , Animais , Humanos , Camundongos , Anormalidades Múltiplas/genética , Fenda Labial/genética , Fissura Palatina/genética , Encefalocele/genética , Mutação , Defeitos do Tubo Neural/genética , Disrafismo Espinal/genética
6.
Nat Rev Rheumatol ; 19(7): 429-445, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37225964

RESUMO

Bone marrow lesions (BMLs), which are early signs of osteoarthritis (OA) that are associated with the presence, onset and severity of pain, represent an emerging imaging biomarker and clinical target. Little is known, however, regarding their early spatial and temporal development, structural relationships or aetiopathogenesis, because of the sparsity of human early OA imaging and paucity of relevant tissue samples. The use of animal models is a logical approach to fill the gaps in our knowledge, and it can be informed by appraising models in which BMLs and closely related subchondral cysts have already been reported, including in spontaneous OA and pain models. The utility of these models in OA research, their relevance to clinical BMLs and practical considerations for their optimal deployment can also inform medical and veterinary clinicians and researchers alike.


Assuntos
Medula Óssea , Osteoartrite do Joelho , Humanos , Animais , Medula Óssea/patologia , Osteoartrite do Joelho/diagnóstico , Imageamento por Ressonância Magnética/métodos , Dor , Modelos Animais
7.
J Anat ; 242(6): 1037-1050, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36772893

RESUMO

Worldwide research groups and funding bodies have highlighted the need for imaging biomarkers to predict osteoarthritis (OA) progression and treatment effectiveness. Changes in trabecular architecture, which can be detected with non-destructive high-resolution CT imaging, may reveal OA progression before apparent articular surface damage. Here, we analysed the tibial epiphyses of STR/Ort (OA-prone) and CBA (healthy, parental control) mice at different ages to characterise the effects of mouse age and strain on multiple bony parameters. We isolated epiphyseal components using a semi-automated method, and measured the total epiphyseal volume; cortical bone, trabecular bone and marrow space volumes; mean trabecular and cortical bone thicknesses; trabecular volume relative to cortical volume; trabecular volume relative to epiphyseal interior (trabecular BV/TV); and the trabecular degree of anisotropy. Using two-way ANOVA (significance level ≤0.05), we confirmed that all of these parameters change significantly with age, and that the two strains were significantly different in cortical and trabecular bone volumes, and trabecular degree of anisotropy. STR/Ort mice had higher cortical and trabecular volumes and a lower degree of anisotropy. As the two mouse strains reflect markedly divergent OA predispositions, these parameters have potential as bioimaging markers to monitor OA susceptibility and progression. Additionally, significant age/strain interaction effects were identified for total epiphyseal volume, marrow space volume and trabecular BV/TV. These interactions confirm that the two mouse strains have different epiphyseal growth patterns throughout life, some of which emerge prior to OA onset. Our findings not only propose valuable imaging biomarkers of OA, but also provide insight into ageing 3D epiphyseal architecture bone profiles and skeletal biology underlying the onset and development of age-related OA in STR/Ort mice.


Assuntos
Osteoartrite , Camundongos , Animais , Camundongos Endogâmicos CBA , Osteoartrite/diagnóstico por imagem , Tíbia/diagnóstico por imagem , Biomarcadores , Epífises/diagnóstico por imagem
8.
Bone ; 170: 116720, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36848959

RESUMO

Beneficial effects of intermittent parathyroid hormone (PTH) on bone mass and architecture are described to either simply add to, or to synergise with those of mechanical loading. We evaluate whether interaction with in vivo loading is reinforced by PTH dosing regimen and exhibits compartment-specific sensitivities. Female 12-week-old C57Bl6 mice received daily (7/7) or interrupted 5 day/week (5/7) PTH for 3 weeks (two vehicle groups). All mice had six loading episodes (12N) applied to right tibia (left, non-loaded) for the last 2 weeks. Micro-CT scans were used to evaluate mass and architecture in almost the entire cortical and proximal trabecular regions. Epiphyseal cortical, trabecular and marrow space volumes, and bony growth-plate bridge incidence were evaluated. Statistical analyses employed a linear mixed-effects model at each percentile and 2-way ANOVA with post-hoc test for epiphyses and bridging. We found that daily PTH enhances cortical mass and modifies shape along almost the entire tibia and that these effects are partly mitigated by brief interruption in treatment. Mechanical loading alone augments cortical mass and modifies shape but only in a region proximal to the tibiofibular junction. The effect of combining load and daily PTH dosing is solely additive for cortical bone mass with no significant load: PTH interaction, but exhibits clear synergy with interrupted PTH treatment. Daily, not interrupted PTH stimulates trabecular bone gains, yet load:PTH interaction is present at limited regions with both daily and interrupted treatment. PTH treatment, but not loading, modifies epiphyseal bone but, in contrast, only loading modifies bridge number and areal density. Our findings demonstrate impressive local effects on tibial mass and shape of combined loading and PTH that are sensitive to dosing regimen and exert their effects modularly. These findings emphasise a need to clarify PTH dosing regimens and that advantages could be accrued by aligning treatment accordingly to patient requirements and life-style.


Assuntos
Anabolizantes , Hormônio Paratireóideo , Camundongos , Animais , Feminino , Hormônio Paratireóideo/farmacologia , Anabolizantes/farmacologia , Camundongos Endogâmicos C57BL , Densidade Óssea/fisiologia , Epífises , Microtomografia por Raio-X , Suporte de Carga , Tíbia/fisiologia
9.
Cell Biochem Funct ; 41(2): 189-201, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36540015

RESUMO

The administration of intermittent parathyroid hormone (iPTH) is anabolic to the skeleton. Recent studies with cultured osteoblasts have revealed that the expression of PHOSPHO1, a bone-specific phosphatase essential for the initiation of mineralisation, is regulated by PTH. Therefore, this study sought to determine whether the bone anabolic response to iPTH involves modulation of expression of Phospho1 and of other enzymes critical for bone matrix mineralisation. To mimic iPTH treatment, primary murine osteoblasts were challenged with 50 nM PTH for 6 h in every 48 h period for 8 days (4 cycles), 14 days (7 cycles) and 20 days (10 cycles) in total. The expression of both Phospho1 and Smpd3 was almost completely inhibited after 4 cycles, whereas 10 cycles were required to stimulate a similar response in Alpl expression. To explore the in vivo role of PHOSPHO1 in PTH-mediated osteogenesis, the effects of 14- and 28-day iPTH (80 µg/kg/day) administration was assessed in male wild-type (WT) and Phospho1-/- mice. The expression of Phospho1, Alpl, Smpd3, Enpp1, Runx2 and Trps1 expression was enhanced in the femora of WT mice following iPTH administration but remained unchanged in the femora of Phospho1-/- mice. After 28 days of iPTH administration, the anabolic response in the femora of WT was greater than that noted in Phospho1-/- mice. Specifically, cortical and trabecular bone volume/total volume, as well as cortical thickness, were increased in femora of iPTH-treated WT but not in iPTH-treated Phospho1-/- mice. Trabecular bone osteoblast number was also increased in iPTH-treated WT mice but not in iPTH-treated Phospho1-/-  mice. The increased levels of Phospho1, Alpl, Enpp1 and Smpd3 in WT mice in response to iPTH administration is consistent with their contribution to the potent anabolic properties of iPTH in bone. Furthermore, as the anabolic response to iPTH was attenuated in mice deficient in PHOSPHO1, this suggests that the osteoanabolic effects of iPTH are at least partly mediated via bone mineralisation processes.


Assuntos
Fosfatase Alcalina , Hormônio Paratireóideo , Masculino , Camundongos , Animais , Hormônio Paratireóideo/metabolismo , Hormônio Paratireóideo/farmacologia , Fosfatase Alcalina/metabolismo , Fosfatase Alcalina/farmacologia , Osso e Ossos/metabolismo , Osteoblastos/metabolismo , Osteogênese , Densidade Óssea , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/farmacologia , Monoéster Fosfórico Hidrolases/metabolismo
10.
J Orthop Res ; 41(8): 1717-1728, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36582023

RESUMO

Fracture burden has created a need to better understand bone repair processes under different pathophysiological states. Evaluation of structural and material properties of the mineralized callus, which is integral to restoring biomechanical stability is, therefore, vital. Microcomputed tomography (micro-CT) can facilitate noninvasive imaging of fracture repair, however, current methods for callus segmentation are only semiautomated, restricted to defined regions, time/labor intensive, and prone to user variation. Herein, we share a new automatic method for segmenting callus in micro-CT tomograms that will allow for objective, quantitative analysis of the bone fracture microarchitecture. Fractured and nonfractured mouse femurs were scanned and processed by both manual and automated segmentation of fracture callus from cortical bone after which microarchitectural parameters were analyzed. All segmentation and analysis steps were performed using CTAn (Bruker) with automatic segmentation performed using the software's image-processing plugins. Results showed automatic segmentation reliably and consistently segmented callus from cortical bone, demonstrating good agreement with manual methods with low bias: tissue volume (TV): -0.320 mm3 , bone volume (BV): 0.0358 mm3 , and bone volume/tissue volume (BV/TV): -3.52%, and was faster and eliminated user-bias and variation. Method scalability and translatability across rodent models were verified in scans of fractured rat femora showing good agreement with manual methods with low bias: TV: -3.654 mm3 , BV: 0.830 mm3 , and BV/TV: 7.81%. Together, these data validate a new automated method for segmentation of callus and cortical bone in micro-CT tomograms that we share as a fast, reliable, and less user-dependent tool for application to study bone callus in fracture, and potentially elsewhere.


Assuntos
Fraturas do Fêmur , Roedores , Ratos , Camundongos , Animais , Microtomografia por Raio-X/métodos , Calo Ósseo/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Fraturas do Fêmur/diagnóstico por imagem
11.
J Bone Miner Res ; 38(1): 5-13, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36301601

RESUMO

Despite knowledge that sexually dimorphic mechanisms regulate bone homeostasis, sex often remains unreported and unconsidered in preclinical experimental design. Failure to report sex could lead to inappropriate generalizations of research findings and less effective translation into clinical practice. Preclinical sex bias (preferential selection of one sex) is present across other fields, including neuroscience and immunology, but remains uninvestigated in skeletal research. For context, we first summarized key literature describing sexually dimorphic bone phenotypes in mice. We then investigated sex reporting practices in skeletal research, specifically how customary it is for murine sex to be included in journal article titles or abstracts and then determined whether any bias in sex reporting exists. Because sex hormones are important regulators of bone health (gonadectomy procedures, ie, ovariectomy [OVX] and orchidectomy [ORX], are common yet typically not reported with sex), we incorporated reporting of OVX and ORX terms, representing female and male mice, respectively, into our investigations around sex bias. Between 1999 and 2020, inclusion of sex in titles or abstracts was low in murine skeletal studies (2.6%-4.06%). Reporting of OVX and ORX terms was low (1.44%-2.64%) and reporting of OVX and ORX with sex uncommon (0.4%-0.3%). When studies were combined to include both sexes and OVX (representing female) and ORX terms (representing male), a bias toward reporting of female mice was evident. However, when the terms OVX and ORX were removed, a bias toward the use of male mice was identified. Thus, studies focusing on sex hormones are biased toward female reporting with all other studies biased in reporting of male mice. We now call upon journal editors to introduce consistent guidance for transparent and accessible reporting of murine sex in skeletal research to better monitor preclinical sex bias, to diversify development of treatments for bone health, and to enable global skeletal health equity. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Assuntos
Osso e Ossos , Hormônios Esteroides Gonadais , Humanos , Camundongos , Masculino , Feminino , Animais , Ovariectomia , Densidade Óssea
12.
J Tissue Eng ; 13: 20417314221133480, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386465

RESUMO

Multiple prevalent diseases, such as osteoarthritis (OA), for which there is no cure or full understanding, affect the osteochondral unit; a complex interface tissue whose architecture, mechanical nature and physiological characteristics are still yet to be successfully reproduced in vitro. Although there have been multiple tissue engineering-based approaches to recapitulate the three dimensional (3D) structural complexity of the osteochondral unit, there are various aspects that still need to be improved. This review presents the different pre-requisites necessary to develop a human osteochondral unit construct and focuses on 3D bioprinting as a promising manufacturing technique. Examples of 3D bioprinted osteochondral tissues are reviewed, focusing on the most used bioinks, chosen cell types and growth factors. Further information regarding the applications of these 3D bioprinted tissues in the fields of disease modelling, drug testing and implantation is presented. Finally, special attention is given to the limitations that currently hold back these 3D bioprinted tissues from being used as models to investigate diseases such as OA. Information regarding improvements needed in bioink development, bioreactor use, vascularisation and inclusion of additional tissues to further complete an OA disease model, are presented. Overall, this review gives an overview of the evolution in 3D bioprinting of the osteochondral unit and its applications, as well as further illustrating limitations and improvements that could be performed explicitly for disease modelling.

13.
Cell Biochem Funct ; 40(7): 683-693, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35924674

RESUMO

Mouse strains can have divergent basal bone mass, yet this phenotype is seldom reflected in the design of studies seeking to identify new modulators of bone resorption by osteoclasts. Sulforaphane exerts inhibitory effects on in vitro osteoclastogenesis in cells from C57BL/6 mice. Here, we explore whether a divergent basal bone mass in different mouse strains is linked both to in vitro osteoclastogenic potential and to SFX-01 sensitivity. Accordingly, osteoclasts isolated from the bone marrow (BM) of C57BL/6, STR/Ort and CBA mice with low, high, and intermediate bone mass, respectively, were cultured under conditions to promote osteoclast differentiation and resorption; they were also treated with chemically stabilised sulforaphane (SFX-01) and respective sensitivity to inhibition evaluated by counting osteoclast number/resorption activity on dentine discs. We observed that osteoclastogenesis exhibited different macrophage colony-stimulating factor/receptor activator of nuclear factor kappa-Β ligand sensitivity in these mouse strains, with cells from C57BL/6 and CBA generating higher osteoclast numbers than STR/Ort; the latter formed only half as many mature osteoclasts. We found that 100 nM SFX-01 exerted a potent and significant reduction in osteoclast number and resorptive activity in cells derived from C57BL/6 mice. In contrast, 10-fold higher SFX-01 concentrations were required for similar inhibition in CBA-derived cells and, strikingly, a further 2.5-fold greater concentration was required for significant restriction of osteoclast formation/function in STR/Ort. These data are consistent with the notion that the BM osteoclast precursor population contributes to the relative differences in mouse bone mass and that mice with higher bone mass exhibit lower in vitro osteoclastogenic potential as well as reduced sensitivity to inhibition by SFX-01.


Assuntos
Reabsorção Óssea , Osteoclastos , Animais , Reabsorção Óssea/tratamento farmacológico , Diferenciação Celular , Células Cultivadas , Isotiocianatos , Ligantes , Fator Estimulador de Colônias de Macrófagos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Ligante RANK/farmacologia , Sulfóxidos
14.
J Endocrinol ; 254(3): 153-167, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35900032

RESUMO

Patients with advanced chronic kidney disease (CKD) often present with skeletal abnormalities, a condition known as renal osteodystrophy (ROD). While tissue non-specific alkaline phosphatase (TNAP) and PHOSPHO1 are critical for bone mineralization, their role in the etiology of ROD is unclear. To address this, ROD was induced in both WT and Phospho1 knockout (P1KO) mice through dietary adenine supplementation. The mice presented with hyperphosphatemia, hyperparathyroidism, and elevated levels of FGF23 and bone turnover markers. In particular, we noted that in CKD mice, bone mineral density (BMD) was increased in cortical bone (P < 0.05) but decreased in trabecular bone (P < 0.05). These changes were accompanied by decreased TNAP (P < 0.01) and increased PHOSPHO1 (P < 0.001) expression in WT CKD bones. In P1KO CKD mice, the cortical BMD phenotype was rescued, suggesting that the increased cortical BMD of CKD mice was driven by increased PHOSPHO1 expression. Other structural parameters were also improved in P1KO CKD mice. We further investigated the driver of the mineralization defects, by studying the effects of FGF23, PTH, and phosphate administration on PHOSPHO1 and TNAP expression by primary murine osteoblasts. We found both PHOSPHO1 and TNAP expressions to be downregulated in response to phosphate and PTH. The in vitro data suggest that the TNAP reduction in CKD-MBD is driven by the hyperphosphatemia and/or hyperparathyroidism noted in these mice, while the higher PHOSPHO1 expression may be a compensatory mechanism. Increased PHOSPHO1 expression in ROD may contribute to the disordered skeletal mineralization characteristic of this progressive disorder.


Assuntos
Distúrbio Mineral e Ósseo na Doença Renal Crônica , Hiperfosfatemia , Monoéster Fosfórico Hidrolases , Insuficiência Renal Crônica , Animais , Densidade Óssea/fisiologia , Distúrbio Mineral e Ósseo na Doença Renal Crônica/complicações , Distúrbio Mineral e Ósseo na Doença Renal Crônica/genética , Hiperfosfatemia/complicações , Camundongos , Camundongos Knockout , Fosfatos , Monoéster Fosfórico Hidrolases/metabolismo , Insuficiência Renal Crônica/genética
15.
J Anat ; 241(4): 875-895, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35866709

RESUMO

Articular calcified cartilage (ACC) has been dismissed, by some, as a remnant of endochondral ossification without functional relevance to joint articulation or weight-bearing. Recent research indicates that morphologic and metabolic ACC features may be important, reflecting knee joint osteoarthritis (OA) predisposition. ACC is less investigated than neighbouring joint tissues, with its component chondrocytes and mineralised matrix often being either ignored or integrated into analyses of hyaline articular cartilage and subchondral bone tissue respectively. Anatomical variation in ACC is recognised between species, individuals and age groups, but the selective pressures underlying this variation are unknown. Consequently, optimal ACC biomechanical features are also unknown as are any potential locomotory roles. This review collates descriptions of ACC anatomy and biology in health and disease, with a view to revealing its structure/function relationship and highlighting potential future research avenues. Mouse models of healthy and OA joint ageing have shown disparities in ACC load-induced deformations at the knee joint. This raises the hypothesis that ACC response to locomotor forces over time may influence, or even underlie, the bony and hyaline cartilage symptoms characteristic of OA. To effectively investigate the ACC, greater resolution of joint imaging and merging of hierarchical scale data will be required. An appreciation of OA as a 'whole joint disease' is expanding, as is the possibility that the ACC may be a key player in healthy ageing and in the transition to OA joint pathology.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cartilagem Articular/patologia , Condrócitos/patologia , Cartilagem Hialina/patologia , Articulação do Joelho/patologia , Camundongos , Osteoartrite/patologia
16.
Sci Rep ; 12(1): 6694, 2022 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-35461315

RESUMO

Early diagnosis of osteoarthritis (OA), before the onset of irreversible changes is crucial for understanding the disease process and identifying potential disease-modifying treatments from the earliest stage. OA is a whole joint disease and affects both cartilage and the underlying subchondral bone. However, spatial relationships between cartilage lesion severity (CLS) and microstructural changes in subchondral plate and trabecular bone remain elusive. Herein, we collected femoral heads from hip arthroplasty for primary osteoarthritis (n = 7) and femoral neck fracture (n = 6; non-OA controls) cases. Samples were regionally assessed for cartilage lesions by visual inspection using Outerbridge classification and entire femoral heads were micro-CT scanned. Scans of each femoral head were divided into 4 quadrants followed by morphometric analysis of subchondral plate and trabecular bone in each quadrant. Principal component analysis (PCA), a data reduction method, was employed to assess differences between OA and non-OA samples, and spatial relationship between CLS and subchondral bone changes. Mapping of the trabecular bone microstructure in OA patients with low CLS revealed trabecular organisation resembling non-OA patients, whereas clear differences were identifiable in subchondral plate architecture. The OA-related changes in subchondral plate architecture were summarised in the first principle component (PC1) which correlated with CLS in all quadrants, whilst by comparison such associations in trabecular bone were most prominent in the higher weight-bearing regions of the femoral head. Greater articular cartilage deterioration in OA was regionally-linked with lower BV/TV, TMD and thickness, and greater BS/BV and porosity in the subchondral plate; and with thinner, less separated trabeculae with greater TMD and BS/BV in the trabecular bone. Our findings suggest that impairment of subchondral bone microstructure in early stage of OA is more readily discernible in the cortical plate and that morphological characterisation of the femoral head bone microstructure may allow for earlier OA diagnosis and monitoring of progression.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Fêmur/patologia , Cabeça do Fêmur/diagnóstico por imagem , Cabeça do Fêmur/patologia , Humanos , Osteoartrite/diagnóstico por imagem , Osteoartrite/patologia , Microtomografia por Raio-X/métodos
17.
EBioMedicine ; 79: 103974, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35430453

RESUMO

BACKGROUND: Rheumatoid arthritis (RA) is a progressive degenerative disorder that leads to joint destruction. Available treatments only target the inflammatory component with minimal impact on joint repair. We recently uncovered a previously unappreciated family of pro-resolving mediators, the maresin conjugate in tissue regeneration (MCTR), that display both immunoregulatory and tissue-protective activities. Thus, we queried whether the production of these autacoids is disrupted in RA patients and whether they can be useful in treating joint inflammation and promoting joint repair. METHODS: Using a highly phenotyped RA cohort we evaluated plasma MCTR concentrations and correlated these to clinical markers of disease activity. To evaluate the immunoregulatory and tissue reparative activities we employed both in vivo models of arthritis and organ culture models. FINDINGS: Herein, we observed that plasma MCTR3 concentrations were negatively correlated with joint disease activity and severity in RA patients. Evaluation of the mechanisms engaged by this mediator in arthritic mice demonstrated that MCTR3 reprograms monocytes to confer enduring joint protective properties. Single cell transcriptomic profiling and flow cytometric evaluation of macrophages from mice treated with MCTR3-reprogrammed monocytes revealed a role for Arginase-1 (Arg-1) in mediating their joint reparative and pro-resolving activities. Arg-1 inhibition reversed both the anti-arthritic and tissue reparative actions of MCTR3-reprogrammed monocytes. INTERPRETATION: Our findings demonstrate that circulating MCTR3 levels are negatively correlated with disease in RA. When administered to mice in vivo, MCTR3 displayed both anti-inflammatory and joint reparative activities, protecting both cartilage and bone in murine arthritis. These activities were, at least in part, mediated via the reprogramming of mononuclear phagocyte responses. FUNDING: This work was supported by funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant no: 677542) and the Barts Charity (grant no: MGU0343) to J.D. J.D. is also supported by a Sir Henry Dale Fellowship jointly funded by the Wellcome Trust and the Royal Society (grant 107613/Z/15/Z).


Assuntos
Artrite Experimental , Artrite Reumatoide , Animais , Anti-Inflamatórios/farmacologia , Arginase/genética , Artrite Reumatoide/tratamento farmacológico , Humanos , Macrófagos , Camundongos , Monócitos
18.
Front Vet Sci ; 9: 789898, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35372534

RESUMO

Osteoarthritis (OA) is the most common orthopedic condition in dogs, characterized as the chronic, painful end-point of a synovial joint with limited therapeutic options other than palliative pain control or surgical salvage. Since the 1970s, radiography has been the standard-of-care for the imaging diagnosis of OA, despite its known limitations. As newer technologies have been developed, the limits of detection have lowered, allowing for the identification of earlier stages of OA. Identification of OA at a stage where it is potentially reversible still remains elusive, however, yet there is hope that newer technologies may be able to close this gap. In this article, we review the changes in the imaging of canine OA over the past 50 years and give a speculative view on future innovations which may provide for earlier identification, with the ultimate goal of repositioning the limit of detection to cross the threshold of this potentially reversible disease.

20.
Proc Inst Mech Eng H ; 236(2): 199-207, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34694183

RESUMO

Femoral neck fractures are a massive personal and health programme burden. Methods to study femoral neck strength, across its combined trabecular and cortical components are therefore essential. Rodent ovariectomy-induced osteoporosis models are commonly coupled with ex vivo 3-/4-point bending methods to measure changes in femoral cortical diaphysis. The loading direction used to assess these properties are often non-physiologic and, moreover, these ovariectomy models are linked to marked weight gain that can influence the biomechanical properties. Herein, we explore whether more physiological axial ex vivo loading protocols applied to femoral neck samples of ovariectomised (OVX) rodents provide anatomically-relevant models for the assessment of strength. We examine the use of mouse and rat femurs, loaded in constrained and unconstrained configuration, respectively, and explore whether weight-correction increases their utility. Accordingly, the mid-shaft of the proximal half of femurs from OVX and sham-operated (Sham) mice was methacrylate-anchored and the head loaded parallel to the diaphysis (constrained). Alternatively, femurs from OVX and Sham rats were isolated intact and axially-loaded through hip and knee joint articular surfaces (unconstrained). Yield displacement, stiffness, maximum load and resilience were measured and fracture pattern classified; effects of body weight-correction via a linear regression method or simple division were assessed. Our data reveal significant deficiencies in biomechanical properties in OVX mouse femurs loaded in constrained configuration, only after weight-correction by linear regression. In addition, evaluation of rat femur biomechanics in unconstrained loading demonstrated greater variation and that weight-correction by simple division improved scope to reveal significant OVX impact. We conclude that greater femoral neck fracture susceptibility can indeed be measured in OVX rodents as long as multiple biomechanical parameters are reported, care is taken in choosing the method for assessing load-bearing strength and weight-correction applied. These studies advance the establishment of more relevant rodent models for the study of femoral neck fracture.


Assuntos
Fraturas do Colo Femoral , Osteoporose , Animais , Fenômenos Biomecânicos , Densidade Óssea , Feminino , Colo do Fêmur , Humanos , Ovariectomia , Ratos , Roedores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...