Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Opin Struct Biol ; 74: 102383, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35504104

RESUMO

The majority of mitochondrial proteins are nuclear-encoded and need to be transported into the mitochondria, including the proteins in the outer mitochondrial membrane. For ß-barrel proteins, the preproteins are initially recognized and imported by the TOM complex, then shuttled to the SAM complex via small Tim proteins. For ⍺-helical proteins, some preproteins are recognized by the TOM complex and imported into the membrane by the MIM complex. In recent years multiple structures of the TOM complex and the SAM complex have been reported, increasing our understanding of the mechanism of protein biogenesis in the outer mitochondrial membrane.


Assuntos
Membranas Mitocondriais , Proteínas de Saccharomyces cerevisiae , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Cells ; 10(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34359907

RESUMO

The voltage-dependent anion channel (VDAC) is a ß-barrel membrane protein located in the outer mitochondrial membrane (OMM). VDAC has two conductance states: an open anion selective state, and a closed and slightly cation-selective state. VDAC conductance states play major roles in regulating permeability of ATP/ADP, regulation of calcium homeostasis, calcium flux within ER-mitochondria contact sites, and apoptotic signaling events. Three reported structures of VDAC provide information on the VDAC open state via X-ray crystallography and nuclear magnetic resonance (NMR). Together, these structures provide insight on how VDAC aids metabolite transport. The interaction partners of VDAC, together with the permeability of the pore, affect the molecular pathology of diseases including Parkinson's disease (PD), Friedreich's ataxia (FA), lupus, and cancer. To fully address the molecular role of VDAC in disease pathology, major questions must be answered on the structural conformers of VDAC. For example, further information is needed on the structure of the closed state, how binding partners or membrane potential could lead to the open/closed states, the function and mobility of the N-terminal α-helical domain of VDAC, and the physiological role of VDAC oligomers. This review covers our current understanding of the various states of VDAC, VDAC interaction partners, and the roles they play in mitochondrial regulation pertaining to human diseases.


Assuntos
Mitocôndrias/patologia , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Canais de Ânion Dependentes de Voltagem/metabolismo , Sequência de Aminoácidos , Humanos , Proteínas Mitocondriais/metabolismo , Eletricidade Estática , Canais de Ânion Dependentes de Voltagem/química
3.
Cells ; 10(5)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-34064787

RESUMO

The central role mitochondria play in cellular homeostasis has made its study critical to our understanding of various aspects of human health and disease. Mitochondria rely on the translocase of the outer membrane (TOM) complex for the bulk of mitochondrial protein import. In addition to its role as the major entry point for mitochondrial proteins, the TOM complex serves as an entry pathway for viral proteins. TOM complex subunits also participate in a host of interactions that have been studied extensively for their function in neurodegenerative diseases, cardiovascular diseases, innate immunity, cancer, metabolism, mitophagy and autophagy. Recent advances in our structural understanding of the TOM complex and the protein import machinery of the outer mitochondrial membrane have made structure-based therapeutics targeting outer mitochondrial membrane proteins during mitochondrial dysfunction an exciting prospect. Here, we describe advances in understanding the TOM complex, the interactome of the TOM complex subunits, the implications for the development of therapeutics, and our understanding of the structure/function relationship between components of the TOM complex and mitochondrial homeostasis.


Assuntos
Membrana Celular/metabolismo , Homeostase , Autofagia , Proteínas de Transporte , Humanos , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/metabolismo , Mitofagia , Doenças Neurodegenerativas/metabolismo , Domínios Proteicos , Transporte Proteico , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Methods Mol Biol ; 2127: 1-11, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32112311

RESUMO

Saccharomyces cerevisiae is a useful eukaryotic expression system for mitochondrial membrane proteins due to its ease of growth and ability to provide a native membrane environment. The development of the pBEVY vector system has further increased the potential of S. cerevisiae as an expression system by creating a method for expressing multiple proteins simultaneously. This vector system is amenable to the expression and purification of multi-subunit protein complexes. Here we describe the cloning, yeast transformation, and co-expression of multi-subunit outer mitochondrial membrane complexes using the pBEVY vector system.


Assuntos
Clonagem Molecular/métodos , Proteínas de Membrana , Membranas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Fracionamento Celular/métodos , Regulação Fúngica da Expressão Gênica , Vetores Genéticos , Proteínas de Membrana/química , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Membranas Mitocondriais/química , Proteínas Mitocondriais/química , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/isolamento & purificação , Proteínas Mitocondriais/metabolismo , Organismos Geneticamente Modificados , Multimerização Proteica/genética , Processamento de Proteína Pós-Traducional , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transformação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...